高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于时频检测与极化匹配的雷达无人机检测方法

杨勇 王雪松 张斌

杨勇, 王雪松, 张斌. 基于时频检测与极化匹配的雷达无人机检测方法[J]. 电子与信息学报, 2021, 43(3): 509-515. doi: 10.11999/JEIT200768
引用本文: 杨勇, 王雪松, 张斌. 基于时频检测与极化匹配的雷达无人机检测方法[J]. 电子与信息学报, 2021, 43(3): 509-515. doi: 10.11999/JEIT200768
Yong YANG, Xuesong WANG, Bin ZHANG. Radar Detection of Unmanned Aerial Vehicles Based on Time-frequency Detection and Polarization Matching[J]. Journal of Electronics & Information Technology, 2021, 43(3): 509-515. doi: 10.11999/JEIT200768
Citation: Yong YANG, Xuesong WANG, Bin ZHANG. Radar Detection of Unmanned Aerial Vehicles Based on Time-frequency Detection and Polarization Matching[J]. Journal of Electronics & Information Technology, 2021, 43(3): 509-515. doi: 10.11999/JEIT200768

基于时频检测与极化匹配的雷达无人机检测方法

doi: 10.11999/JEIT200768
基金项目: 国家自然科学基金(61625108, 61871385)
详细信息
    作者简介:

    杨勇:男,1985年生,副教授,研究方向为极化雷达目标检测与识别

    王雪松:男,1972年生,教授,研究方向为极化雷达信息处理

    张斌:男,1991年生,硕士生,研究方向为极化雷达目标检测

    通讯作者:

    杨勇 youngtfvc@163.com

  • 中图分类号: TN95

Radar Detection of Unmanned Aerial Vehicles Based on Time-frequency Detection and Polarization Matching

Funds: The National Natural Science Foundation of China (61625108, 61871385)
  • 摘要: 针对雷达检测无人机这一难题,该文提出了一种时频检测与极化匹配相结合的双极化雷达无人机检测方法。首先,雷达降低检测门限,各极化通道分别采用常规的时频2维单元平均恒虚警率检测方法,检测出无人机与杂波虚警;接着,各极化通道分别针对多帧检测结果进行积累,进行2次检测,剔除部分杂波虚警;最后,对两个极化通道双门限检测结果进行匹配,进一步剔除杂波虚警。对两型无人机的外场试验数据处理结果表明:该方法能够有效检测出无人机,消除杂波虚警。
  • 图  1  双极化雷达无人机检测方法流程图

    图  2  双极化雷达无人机外场试验场景和无人机航线

    图  3  雷达匹配滤波和加窗后的时域输出信号幅度

    图  4  双极化雷达对固定翼无人机的多帧检测结果

    图  5  双极化通道对固定翼无人机检测结果匹配后的结果及其放大图

    图  6  雷达HH通道单帧对固定翼无人机的检测结果

    图  7  雷达HH通道第1帧数据多普勒滤波输出

    图  8  双极化雷达对旋翼无人机的多帧检测结果

    图  9  对双极化通道旋翼无人机检测结果匹配后的结果

  • JAHANGIR M, BAKER C J, and OSWALD G A. Doppler characteristics of micro-drones with L-band multibeam staring radar[C]. 2017 IEEE Radar Conference (RadarConf), Seattle, USA, 2017: 1052–1057. doi: 10.1109/RADAR.2017.7944360.
    JAHANGIR M and BAKER C. Persistence surveillance of difficult to detect micro-drones with L-band 3-D holographic radarTM[C]. 2016 CIE International Conference on Radar (RADAR), Guangzhou, China, 2016: 1–5. doi: 10.1109/RADAR.2016.8059282.
    王雪松, 杨勇. 海杂波与目标极化特性研究进展[J]. 电波科学学报, 2019, 34(6): 665–675. doi: 10.13443/j.cjors.2019103101

    WANG Xuesong and YANG Yong. Overview on cognition of clutter and target polarization characteristics for maritime radar[J]. Chinese Journal of Radio Science, 2019, 34(6): 665–675. doi: 10.13443/j.cjors.2019103101
    KHRISTENKO A V, KONOVALENKO M O, ROVKIN M E, et al. Magnitude and spectrum of electromagnetic wave scattered by small quadcopter in X -Band[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(4): 1977–1984. doi: 10.1109/TAP.2018.2800640
    GUAY R, DROLET G, and BRAY J R. Measurement and modelling of the dynamic radar cross-section of an unmanned aerial vehicle[J]. IET Radar, Sonar & Navigation, 2017, 11(7): 1155–1160. doi: 10.1049/iet-rsn.2016.0520
    PIERACCINI M, MICCINESI L, and ROJHANI N. RCS measurements and ISAR images of small UAVs[J]. IEEE Aerospace and Electronic Systems Magazine, 2017, 32(9): 28–32. doi: 10.1109/MAES.2017.160167
    宋晨, 周良将, 吴一戎, 等. 基于时频集中度指标的多旋翼无人机微动特征参数估计方法[J]. 电子与信息学报, 2020, 42(8): 2029–2036. doi: 10.11999/JEIT190309

    SONG Chen, ZHOU Liangjiang, WU Yirong, et al. An estimation method of micro-movement parameters of UAV based on the concentration of time-frequency[J]. Journal of Electronics &Information Technology, 2020, 42(8): 2029–2036. doi: 10.11999/JEIT190309
    FUHRMANN L, BIALLAWONS O, KLARE J, et al. Micro-Doppler analysis and classification of UAVs at Ka band[C]. The 18th International Radar Symposium (IRS), Prague, Czech Republic, 2017: 1–9. doi: 10.23919/IRS.2017.8008142.
    NANZER J A and CHEN V C. Microwave interferometric and Doppler radar measurements of a UAV[C]. 2017 IEEE Radar Conference (RadarConf), Seattle, USA, 2017: 1628–1633. doi: 10.1109/RADAR.2017.7944468.
    HUIZING A, HEILIGERS M, DEKKER B, et al. Deep learning for classification of mini-UAVs using micro-Doppler spectrograms in cognitive radar[J]. IEEE Aerospace and Electronic Systems Magazine, 2019, 34(11): 46–56. doi: 10.1109/MAES.2019.2933972
    KIM B K, KANG H S, and PARK S O. Experimental analysis of small drone polarimetry based on micro-Doppler signature[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(10): 1670–1674. doi: 10.1109/LGRS.2017.2727824
    陈小龙, 陈唯实, 饶云华, 等. 飞鸟与无人机目标雷达探测与识别技术进展与展望[J]. 雷达学报, 2020, 9(5): 803–827. doi: 10.12000/JR20068

    CHEN Xiaolong, CHEN Weishi, RAO Yunhua, et al. Progress and prospects of radar target detection and recognition technology for flying birds and unmanned aerial vehicles[J]. Journal of Radars, 2020, 9(5): 803–827. doi: 10.12000/JR20068
    TORVIK B, OLSEN K E, and GRIFFITHS H. Classification of birds and UAVs based on radar polarimetry[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(9): 1305–1309. doi: 10.1109/LGRS.2016.2582538
    LI C J and LING Hao. An investigation on the radar signatures of small consumer drones[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 649–652. doi: 10.1109/LAWP.2016.2594766
    TO L, BATI A, and HILLIARD D. Radar cross section measurements of small unmanned air vehicle systems in non-cooperative field environments[C]. The 2009 3rd European Conference on Antennas and Propagation, Berlin, Germany, 2009: 3637–3641.
    FRANKFORD M T, STEWART K B, MAJUREC N, et al. Numerical and experimental studies of target detection with MIMO radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 1569–1577. doi: 10.1109/TAES.2014.120180
    YANG Yong, WANG Xuesong, LI Yongzhen, et al. RCS measurements and ISAR images of fixed-wing UAV for fully polarimetric radar[C]. 2019 International Radar Conference (RADAR), Toulon, France, 2019: 1–5. doi: 10.1109/RADAR41533.2019.171361.
    YANG Yong, BAI Yang, WU Jiani, et al. Experimental analysis of fully polarimetric radar returns of a fixed-wing UAV[J]. IET Radar, Sonar & Navigation, 2020, 14(4): 525–531. doi: 10.1049/iet-rsn.2019.0312
    张斌, 杨勇, 逯旺旺, 等. Ku波段固定翼无人机全极化RCS统计特性研究[J]. 现代雷达, 2020, 42(6): 41–47. doi: 10.16592/j.cnki.1004-7859.2020.06.005

    ZHANG Bin, YANG Yong, LU Wangwang, et al. A study on fully polarimetric RCS statistical characteristics of fixed-wing UAV in Ku band[J]. Modern Radar, 2020, 42(6): 41–47. doi: 10.16592/j.cnki.1004-7859.2020.06.005
    白杨, 吴洋, 殷红成, 等. 无人机极化散射特性室内测量研究[J]. 雷达学报, 2016, 5(6): 647–657. doi: 10.12000/JR16032

    BAI Yang, WU Yang, YIN Hongcheng, et al. Indoor measurement research on polarimetric scattering characteristics of UAV[J]. Journal of Radars, 2016, 5(6): 647–657. doi: 10.12000/JR16032
    胡勤振, 苏洪涛, 周生华, 等. 多基地雷达中双门限CFAR检测算法[J]. 电子与信息学报, 2016, 38(10): 2430–2436. doi: 10.11999/JEIT151163

    HU Qinzhen, SU Hongtao, ZHOU Shenghua, et al. Double threshold CFAR detection for multisite radar[J]. Journal of Electronics &Information Technology, 2016, 38(10): 2430–2436. doi: 10.11999/JEIT151163
  • 加载中
图(9)
计量
  • 文章访问数:  1512
  • HTML全文浏览量:  611
  • PDF下载量:  200
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-15
  • 修回日期:  2020-10-20
  • 网络出版日期:  2021-02-18
  • 刊出日期:  2021-03-22

目录

    /

    返回文章
    返回