高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于二阶对抗样本的对抗训练防御

钱亚冠 张锡敏 王滨 顾钊铨 李蔚 云本胜

钱亚冠, 张锡敏, 王滨, 顾钊铨, 李蔚, 云本胜. 基于二阶对抗样本的对抗训练防御[J]. 电子与信息学报, 2021, 43(11): 3367-3373. doi: 10.11999/JEIT200723
引用本文: 钱亚冠, 张锡敏, 王滨, 顾钊铨, 李蔚, 云本胜. 基于二阶对抗样本的对抗训练防御[J]. 电子与信息学报, 2021, 43(11): 3367-3373. doi: 10.11999/JEIT200723
Yaguan QIAN, Ximin ZHANG, Bin WANG, Zhaoquan GU, Wei LI, Bensheng YUN. Adversarial Training Defense Based on Second-order Adversarial Examples[J]. Journal of Electronics & Information Technology, 2021, 43(11): 3367-3373. doi: 10.11999/JEIT200723
Citation: Yaguan QIAN, Ximin ZHANG, Bin WANG, Zhaoquan GU, Wei LI, Bensheng YUN. Adversarial Training Defense Based on Second-order Adversarial Examples[J]. Journal of Electronics & Information Technology, 2021, 43(11): 3367-3373. doi: 10.11999/JEIT200723

基于二阶对抗样本的对抗训练防御

doi: 10.11999/JEIT200723
基金项目: 国家重点研发计划项目(2018YFB2100400),国家自然科学基金(61902082)
详细信息
    作者简介:

    钱亚冠:男,1976年生,副教授,研究方向为人工智能安全

    张锡敏:女,1996年生,硕士生,研究方向为对抗机器学习

    王滨:男,1978年生,研究员,研究方向为网络与信息安全

    顾钊铨:男,1989年生,教授,研究方向为人工智能安全

    李蔚:女,1978年生,副教授,研究方向为计算机视觉

    云本胜:男,1980年生,副教授,研究方向为数据挖掘

    通讯作者:

    王滨 32874546@qq.com

  • 中图分类号: TN915.08; TP309.2

Adversarial Training Defense Based on Second-order Adversarial Examples

Funds: The National Research and Development Program of China (2018YFB2100400), The National Natural Science Foundation of China (61902082)
  • 摘要: 深度神经网络(DNN)应用于图像识别具有很高的准确率,但容易遭到对抗样本的攻击。对抗训练是目前抵御对抗样本攻击的有效方法之一。生成更强大的对抗样本可以更好地解决对抗训练的内部最大化问题,是提高对抗训练有效性的关键。该文针对内部最大化问题,提出一种基于2阶对抗样本的对抗训练,在输入邻域内进行2次多项式逼近,生成更强的对抗样本,从理论上分析了2阶对抗样本的强度优于1阶对抗样本。在MNIST和CIFAR10数据集上的实验表明,2阶对抗样本具有更高的攻击成功率和隐蔽性。与PGD对抗训练相比,2阶对抗训练防御对当前典型的对抗样本均具有鲁棒性。
  • 图  1  C与优化过程中交叉熵损失函数的关系

    图  2  对抗训练DNN对于对抗样本的分类准确率

    表  1  基于2阶对抗样本的对抗训练算法

     输入 $ {\boldsymbol{X}} $为数据集;$T$为训练批次;$M$为训练集大小;$n$为梯度下
        降迭代次数;$\tau $为学习率
     输出 $ q $为模型参数
     1:初始化模型参数 $ q $
     2: for ${\text{epoch} } = 1,2,\cdots, T$ do
     3:   for $m = 1,2,\cdots, M$ do
     4:      $\nabla L(X) \leftarrow {\left[ {\dfrac{{\partial L({\boldsymbol{X}})}}{{\partial {{\boldsymbol{X}}_i}}}} \right]_{n \times 1}}$

     5:      ${\nabla ^2}L({\boldsymbol{X}}) \leftarrow {\left[ {\dfrac{{{\partial ^2}L({\boldsymbol{X}})}}{{\partial {{\boldsymbol{X}}_i}\partial {{\boldsymbol{X}}_j}}}} \right]_{n \times n}}$
     6:      $T({{\boldsymbol{\delta }}}) = L({\boldsymbol{X}}) + \nabla L{({\boldsymbol{X}})^T}{\delta } + \dfrac{1}{2}{{{\boldsymbol{\delta}} }^T}{\nabla ^2}L({\boldsymbol{X}}){{\boldsymbol{\delta}} }$
     7:      for $k = 1,2,\cdots, n$ do
     8:        ${{\boldsymbol{\delta}} } \leftarrow {{\boldsymbol{\delta}} } + \alpha \cdot {\text{sign}}({\nabla _{\delta }}T({{\boldsymbol{\delta}} }))$
     9:      end for
     10:      $ {{\boldsymbol{\theta}} } \leftarrow {{\boldsymbol{\theta}} } - \tau \cdot {\nabla _{\theta }}L({\boldsymbol{X}} + {{\boldsymbol{\delta}} }) $
     11:   end for
     12:end for
    下载: 导出CSV

    表  2  不同的对抗样本在MNIST和CIFAR10的对比

    MNISTCIFAR10
    ${\ell _2}$${\ell _\infty }$PSNRASR(%)${\ell _2}$${\ell _\infty }$PSNRASR(%)
    本文1.970.2476.01001.840.2481.4100
    C&W2.560.2771.41002.420.3079.3100
    Deepfool3.250.3073.888.12.920.3074.281.4
    M-DI2-FGSM2.750.2975.695.13.120.2577.191.7
    FGSM3.260.3074.254.12.340.3075.051.3
    PGD2.250.2672.31002.180.5878.7100
    下载: 导出CSV
  • [1] CHICCO D, SADOWSKI P, and BALDI P. Deep autoencoder neural networks for gene ontology annotation predictions[C]. Proceedings of the 5th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics, Newport Beach, America, 2014: 533–554.
    [2] SPENCER M, EICKHOLT J, and CHENG Jianlin. A deep learning network approach to ab initio protein secondary structure prediction[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2015, 12(1): 103–112. doi: 10.1109/TCBB.2014.2343960
    [3] MIKOLOV T, DEORAS A, POVEY D, et al. Strategies for training large scale neural network language models[C]. 2011 IEEE Workshop on Automatic Speech Recognition & Understanding, Waikoloa, America, 2011: 196–201.
    [4] HINTON G, DENG Li, YU Dong, et al. Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups[J]. IEEE Signal Processing Magazine, 2012, 29(6): 82–97. doi: 10.1109/MSP.2012.2205597
    [5] LECUN Y, KAVUKCUOGLU K, FARABET C, et al. Convolutional networks and applications in vision[C]. Proceedings of 2010 IEEE International Symposium on Circuits and Systems, Paris, France, 2010: 253–256.
    [6] KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[C]. Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1, Lake Tahoe Nevada, America, 2012: 1097–1105.
    [7] SZEGEDY C, ZAREMBA W, SUTSKEVER I, et al. Intriguing properties of neural networks[C]. 2nd International Conference on Learning Representations, ICLR 2014, Banff, Canada, 2014.
    [8] STALLKAMP J, SCHLIPSING M, SALMEN J, et al. Man vs. computer: Benchmarking machine learning algorithms for traffic sign recognition[J]. Neural Networks, 2012, 32: 323–332. doi: 10.1016/j.neunet.2012.02.016
    [9] CARLINI N and WAGNER D. Towards evaluating the robustness of neural networks[C]. 2017 IEEE Symposium on Security and Privacy (SP), San Jose, America, 2017: 39–57.
    [10] MOOSAVI-DEZFOOLI S M, FAWZI A, and FROSSARD P. DeepFool: A simple and accurate method to fool deep neural networks[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, America, 2016: 2574–2582. doi: 10.1109/CVPR.2016.282.
    [11] XIE Cihang, ZHANG Zhishuai, ZHOU Yuyin, et al. Improving transferability of adversarial examples with input diversity[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, America, 2019: 2725–2734.
    [12] LEE J G, JUN S, CHO Y W, et al. Deep learning in medical imaging: General overview[J]. Korean Journal of Radiology, 2017, 18(4): 570–584. doi: 10.3348/kjr.2017.18.4.570
    [13] MADRY A, MAKELOV A, SCHMIDT L, et al. Towards deep learning models resistant to adversarial attacks[C]. ICLR 2018 Conference Blind Submission, Vancouver, Canada, 2018.
    [14] GOODFELLOW I J, SHLENS J, and SZEGEDY C. Explaining and harnessing adversarial examples[C]. 3rd International Conference on Learning Representations, San Diego, America, 2015.
    [15] ARAUJO A, MEUNIER L, PINOT R, et al. Robust neural networks using randomized adversarial training[EB/OL]. https://arxiv.org/pdf/1903.10219.pdf, 2020.
    [16] LAMB A, BINAS J, GOYAL A, et al. Fortified networks: Improving the robustness of deep networks by modeling the manifold of hidden representations[C]. ICLR 2018 Conference Blind Submission, Vancouver, Canada, 2018.
    [17] XU Weilin, EVANS D, and QI Yanjun. Feature squeezing: Detecting adversarial examples in deep neural networks[C]. Network and Distributed Systems Security Symposium (NDSS), San Diego, America, 2018. doi: 10.14722/ndss.2018.23198.
    [18] BELINKOV Y and BISK Y. Synthetic and natural noise both break neural machine translation[C]. ICLR 2018 Conference Blind Submission, Vancouver, Canada, 2018.
    [19] YANG Yuzhe, ZHANG Guo, KATABI D, et al. ME-net: Towards effective adversarial robustness with matrix estimation[C]. Proceedings of the 36th International Conference on Machine Learning, Long Beach, America, 2019.
  • 加载中
图(2) / 表(2)
计量
  • 文章访问数:  1074
  • HTML全文浏览量:  606
  • PDF下载量:  131
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-06
  • 修回日期:  2021-08-20
  • 网络出版日期:  2021-09-16
  • 刊出日期:  2021-11-23

目录

    /

    返回文章
    返回