高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于SVM的广义空移键控可见光通信系统信号检测算法

商建东 孙浩博 王法松

商建东, 孙浩博, 王法松. 基于SVM的广义空移键控可见光通信系统信号检测算法[J]. 电子与信息学报, 2021, 43(10): 2894-2901. doi: 10.11999/JEIT200711
引用本文: 商建东, 孙浩博, 王法松. 基于SVM的广义空移键控可见光通信系统信号检测算法[J]. 电子与信息学报, 2021, 43(10): 2894-2901. doi: 10.11999/JEIT200711
Jiandong SHANG, Haobo SUN, Fasong WANG. SVM-aided Signal Detection in Generalized Space Shift Keying Visible Light Communication System[J]. Journal of Electronics & Information Technology, 2021, 43(10): 2894-2901. doi: 10.11999/JEIT200711
Citation: Jiandong SHANG, Haobo SUN, Fasong WANG. SVM-aided Signal Detection in Generalized Space Shift Keying Visible Light Communication System[J]. Journal of Electronics & Information Technology, 2021, 43(10): 2894-2901. doi: 10.11999/JEIT200711

基于SVM的广义空移键控可见光通信系统信号检测算法

doi: 10.11999/JEIT200711
基金项目: 国家自然科学基金(61401401),河南省科技攻关项目(192102210088)
详细信息
    作者简介:

    商建东:男,1968年生,教授,博士生导师,研究方向为高性能计算、计算机网络与通信

    孙浩博:男,1995年生,硕士生,研究方向为可见光通信

    王法松:男,1979年生,教授,硕士生导师,研究方向为盲信号处理、可见光通信

    通讯作者:

    王法松 iefswang@zzu.edu.cn

  • 中图分类号: TN929.12

SVM-aided Signal Detection in Generalized Space Shift Keying Visible Light Communication System

Funds: The National Natural Science Foundation of China (61401401), The Science and Technology Research Project of Henan Province (192102210088)
  • 摘要: 针对室内广义空移键控(GSSK)调制的可见光通信(VLC)系统,该文提出一种基于支持向量机(SVM)的机器学习信号检测算法。在一般的VLC系统中,极大似然(ML)检测是最优检测算法,但是ML检测算法具有很高的计算复杂度。为了解决此问题,该文利用机器学习中的SVM分类思想实现对系统接收端的信号检测,以在保证信号检测正确率的情况下,降低计算复杂度,提高GSSK-VLC系统的信号检测效率。仿真结果表明,该文提出的针对室内GSSK-VLC系统的SVM信号检测算法与ML检测算法相比,在具有接近ML的误比特率(BER)性能的同时,计算复杂度明显降低,有效提升了系统的检测性能。
  • 图  1  室内VLC系统概念图

    图  2  GSSK-VLC系统框图

    图  3  LoS传输的几何模型示意图

    图  4  针对SSK-VLC系统不同算法的BER性能分析

    图  5  针对GSSK-VLC系统的不同算法的BER性能分析

    表  1  GSSK-VLC系统标签

    $n$${l_n}$${i_n}$LED index
    11000LED 1 & 2
    22001LED 1 & 3
    33010LED 1 & 4
    44011LED 1 & 5
    55100LED 2 & 3
    66101LED 2 & 4
    77110LED 2 & 5
    88111LED 3 & 4
    下载: 导出CSV

    表  2  LED位置的空间分布坐标

    4 LEDs8 LEDs
    LED$({O_X},{O_Y},{O_Z})\;{ \rm{m} }$1(1.25, 0.35, 3)
    1(1.25, 1.25, 3)2(3.85, 0.35, 3)
    2(3.25, 1.25, 3)3(1.25, 1.85, 3)
    3(1.35, 3.25, 3)4(3.85, 1.85, 3)
    4(3.25, 3.25, 3)5(1.25, 3.25, 3)
    6(3.85, 3.25, 3)
    7(1.25, 4.25, 3)
    8(3.85, 4.25, 3)
    下载: 导出CSV

    表  3  系统仿真参数设置

    发射端 (LED)接收端(PD)
    LED数量$({N_{\rm{t} } })$4, 8PD数量$({N_r})$4
    距地面高度3 m距地面高度0.85 m
    半功率半角$({\phi _{1/2} })$${60^ \circ }$PD的物理面积$({A_{\rm{PD} }})$$1 \;{{\rm{cm}} ^2}$
    光学滤波器增益$({{T}_s}(\psi ))$1.0PD的FoV半角$({\varPsi _{\rm{FoV}}})$${60^ \circ }$
    光电转换效率$(\eta )$813.6 μW/mA折光率$(\beta )$$1.5$
    调制指数$(\alpha )$$0.1$PD响应度$(R)$100 μA/mW
    下载: 导出CSV

    表  4  针对GSSK-VLC系统基于不同检测算法所需时间对比

    检测算法计算时间(s)
    KMC175.8836
    KMC (20)3517.6607
    KMC (50)8794.1735
    IKMC879.418
    SVM98.6687
    ML10904.7794
    下载: 导出CSV
  • [1] LIU Wenlong, ZHANG Ying, and JIN Minglu. Lagrangian detection for generalized space-shift keying MIMO systems[J]. IEEE Transactions on Vehicular Technology, 2017, 66(9): 8585–8589. doi: 10.1109/TVT.2017.2678528
    [2] ZHANG Xinhe, LIU Qian, and JIN Minglu. Detection of generalized space shift keying signal with sparse reconstruction[J]. IEEE Transactions on Vehicular Technology, 2017, 66(6): 5471–5475. doi: 10.1109/TVT.2016.2621160
    [3] JEGANATHAN J, GHRAYEB A, and SZCZECINSKI L. Generalized space shift keying modulation for MIMO channels[C]. 2008 IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications, Cannes, France, 2008: 1–5. doi: 10.1109/PIMRC.2008.4699782.
    [4] 吴楠, 王旭东, 姚凯莉, 等. 可见光通信中的无载波位相调制技术[J]. 电子与信息学报, 2017, 39(2): 360–366. doi: 10.11999/JEIT160343

    WU Nan, WANG Xudong, YAO Kaili, et al. Carrier-less position/phase modulation for visible light communications[J]. Journal of Electronics &Information Technology, 2017, 39(2): 360–366. doi: 10.11999/JEIT160343
    [5] FATH T and HAAS H. Performance comparison of MIMO techniques for optical wireless communications in indoor environments[J]. IEEE Transactions on Communications, 2013, 61(2): 733–742. doi: 10.1109/TCOMM.2012.120512.110578
    [6] WANG T Q, SEKERCIOGLU Y A, and ARMSTRONG J. Analysis of an optical wireless receiver using a hemispherical lens with application in MIMO visible light communications[J]. Journal of Lightwave Technology, 2013, 31(11): 1744–1754. doi: 10.1109/JLT.2013.2257685
    [7] YING Kai, QIAN Hua, BAXLEY R J, et al. Joint optimization of precoder and equalizer in MIMO VLC systems[J]. IEEE Journal on Selected Areas in Communications, 2015, 33(9): 1949–1958. doi: 10.1109/JSAC.2015.2432515
    [8] MITCHELL T, BUCHANAN B, DEJONG G, et al. Machine learning[J]. Kluwer International, 2003, 4(1): 417–433. doi: 10.1007/978-1-4613-2279-5
    [9] 佟鑫, 李莹, 陈岚. SVM算法在硬件木马旁路分析检测中的应用[J]. 电子与信息学报, 2020, 42(7): 1643–1651. doi: 10.11999/JEIT190532

    TONG Xin, LI Ying, and CHEN Lan. Application of SVM machine learning to hardware trojan detection using side-channel analysis[J]. Journal of Electronics &Information Technology, 2020, 42(7): 1643–1651. doi: 10.11999/JEIT190532
    [10] LIANG Hanwen, CHUMG W H, and KUO S Y. Coding-aided K-means clustering blind transceiver for space shift keying MIMO systems[J]. IEEE Transactions on Wireless Communications, 2016, 15(1): 103–115. doi: 10.1109/TWC.2015.2467394
    [11] YOU Longfei, YANG Ping, XIAO Yue, et al. Blind detection for spatial modulation systems based on clustering[J]. IEEE Communications Letters, 2017, 21(11): 2392–2395. doi: 10.1109/LCOMM.2017.2734648
    [12] ZHANG Lijuan and JIN Minglu. A constrained clustering-based blind detector for spatial modulation[J]. IEEE Communications Letters, 2019, 23(7): 1170–1173. doi: 10.1109/LCOMM.2019.2915304
    [13] JIANG Rui, SUN Caiming, ZHANG Long, et al. Deep learning aided signal detection for SPAD-based underwater optical wireless communications[J]. IEEE Access, 2020, 8: 20363–20374. doi: 10.1109/ACCESS.2020.2967461
    [14] LEE H, LEE I, and LEE S H. Deep learning based transceiver design for multi-colored VLC systems[J]. Optics Express, 2018, 26(5): 6222–6238. doi: 10.1364/OE.26.006222
    [15] YUAN Youli, ZHANG Min, LUO Pengfei, et al. SVM-based detection in visible light communications[J]. Optik, 2017, 151: 55–64. doi: 10.1016/j.ijleo.2017.08.089
    [16] MOSTAFA A and LAMPE L. Physical-Layer security for MISO visible light communication channels[J]. IEEE Journal on Selected Areas in Communications, 2015, 33(9): 1806–1818. doi: 10.1109/JSAC.2015.2432513
    [17] MOSTAFA A and LAMPE L. Optimal and robust beamforming for secure transmission in MISO visible-light communication links[J]. IEEE Transactions on Signal Processing, 2016, 64(24): 6501–6516. doi: 10.1109/TSP.2016.2603964
    [18] WANG Fasong, LIU Chaowen, WANG Qi, et al. Secrecy analysis of generalized space-shift keying aided visible light communication[J]. IEEE Access, 2018, 6: 18310–18324. doi: 10.1109/ACCESS.2018.2799658
    [19] HANDTE T, MULLER A, and SPEIDEL J. BER analysis and optimization of generalized spatial modulation in correlated fading channels[C]. The 70th IEEE Vehicular Technology Conference Fall (VTC 2009-Fall), Anchorage, USA, 2009: 1–5. doi: 10.1109/VETECF.2009.5378677.
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  999
  • HTML全文浏览量:  319
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-11
  • 修回日期:  2021-04-15
  • 网络出版日期:  2021-07-14
  • 刊出日期:  2021-10-18

目录

    /

    返回文章
    返回