高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

结合空间域与变换域特征提取的盲立体图像质量评价

陈勇 金曼莉 朱凯欣 刘焕淋 陈东

陈勇, 金曼莉, 朱凯欣, 刘焕淋, 陈东. 结合空间域与变换域特征提取的盲立体图像质量评价[J]. 电子与信息学报, 2021, 43(10): 2958-2966. doi: 10.11999/JEIT200694
引用本文: 陈勇, 金曼莉, 朱凯欣, 刘焕淋, 陈东. 结合空间域与变换域特征提取的盲立体图像质量评价[J]. 电子与信息学报, 2021, 43(10): 2958-2966. doi: 10.11999/JEIT200694
Yong CHEN, Manli JIN, Kaixin ZHU, Huanlin LIU, Dong CHEN. Blind Stereo Image Quality Evaluation Based on Spatial Domain and Transform Domain Feature Extraction[J]. Journal of Electronics & Information Technology, 2021, 43(10): 2958-2966. doi: 10.11999/JEIT200694
Citation: Yong CHEN, Manli JIN, Kaixin ZHU, Huanlin LIU, Dong CHEN. Blind Stereo Image Quality Evaluation Based on Spatial Domain and Transform Domain Feature Extraction[J]. Journal of Electronics & Information Technology, 2021, 43(10): 2958-2966. doi: 10.11999/JEIT200694

结合空间域与变换域特征提取的盲立体图像质量评价

doi: 10.11999/JEIT200694
基金项目: 国家自然科学基金 (51977021)
详细信息
    作者简介:

    陈勇:男,1963年生,博士,教授,主要从事图像处理

    金曼莉:女,1997年生,硕士生,主要从事无参考图像质量评价

    朱凯欣:女,1994年生,硕士,主要从事立体图像质量评价

    刘焕淋:女,1970年生,博士生导师,教授,主要从事信号处理等方面的研究

    陈东:男,1996年生,硕士,主要从事无参考图像质量评价与图像增强

    通讯作者:

    陈勇 chenyong@cqupt.edu.cn

  • 中图分类号: TN911.73; TP391.41

Blind Stereo Image Quality Evaluation Based on Spatial Domain and Transform Domain Feature Extraction

Funds: The National Natural Science Foundation of China (51977021)
  • 摘要: 针对立体图像质量预测准确性不足的问题,该文提出了一种结合空间域和变换域提取质量感知特征的无参考立体图像质量评价模型。在空间域和变换域分别提取输入的左、右视图的自然场景统计特征,并在变换域提取合成独眼图的自然场景统计特征,然后将其输入到支持向量回归(SVR)中,训练从特征域到质量分数域的预测模型,并以此建立SIQA客观质量评价模型。在4个公开的立体图像数据库上与一些主流的立体图像质量评价算法进行对比,以在LIVE 3D Phase I图像库中的性能测试为例,Spearman秩相关系数、皮尔逊线性相关系数和均方根误差分别达到0.967,0.946和5.603,验证了所提算法的有效性。
  • 图  1  SIQA模型的整体框架

    图  2  左视图、右视图、合成独眼图及其相应的MSCN系数的统计分布直方图

    图  3  左右视图及纵向相关系数图的统计分布直方图

    图  4  参考图像及失真图像经DCT后的能量分布图

    图  5  不同频率子带的DCT系数

    图  6  所提模型在4个数据库中图像预测值和主观评分的散点图

    表  1  LIVE 3D Phase I和II图像库中的性能测试

    失真类型PLCCSROCCRMSE
    WN0.964(0.988)0.958(0.964)6.004(4.954)
    JP2K0.924 (0.927)0.907(0.915)6.518(5.361)
    JPEG0.730 (0.903)0.785(0.900)7.010(5.337)
    Gblur0.972 (0.979)0.937(0.962)5.412(3.478)
    FF0.943 (0.945)0.913(0.921)5.433(3.679)
    All0.967 (0.949)0.946(0.935)5.603(3.501)
    下载: 导出CSV

    表  2  LIVE 3D Phase I和II图像库中整体性能比较

    对比算法LIVE 3D Phase ILIVE 3D Phase II
    PLCCSROCCRMSEPLCCSROCCRMSE
    Lin[29]FR0.9360.9315.7440.9110.8934.647
    Khan[23]FR0.9270.9160.9320.922
    Chen FR[14]FR0.8330.9156.2680.7700.8884.892
    Jiang[24]FR0.9450.9335.2760.9160.9034.523
    Ma[25]RR0.9300.9296.0240.9210.9174.390
    SINQ[8]NR0.9550.9354.7810.9360.9313.959
    Zhou[8]NR0.9410.9215.5400.9230.9194.262
    Karimi[26]NR0.9560.9404.9980.9230.9134.436
    Yang-SAE[27]NR0.9610.9490.9380.928
    Fezza[13]NR0.9250.9083.018
    BRISQUE[28]NR0.9100.9016.7930.7820.7707.038
    本文算法NR0.9670.9465.6030.9490.9353.501
    下载: 导出CSV

    表  3  跨库性能对比实验

    方法LIVE 3D Phase I/Phase IILIVE 3D Phase II/Phase I
    PLCCSROCCPLCCSROCC
    Yang-SAE[27]0.8610.8460.8600.845
    BRISQUE[28]0.5950.4580.5720.556
    CNN-based[30]0.2270.2080.7430.741
    本文算法0.8530.8490.8830.868
    下载: 导出CSV
  • [1] 高新波, 路文, 查林, 等. 超高清视频画质提升技术及其芯片化方案[J]. 重庆邮电大学学报:自然科学版, 2020, 32(5): 681–697. doi: 10.3979/j.issn.1673-825X.2020.05.001

    GAO Xinbo, LU Wen, ZHA Lin, et al. Quality elevation technique for UHD video and its VLSI solution[J]. Journal of Chongqing University of Posts and Telecommunications:Natural Science Edition, 2020, 32(5): 681–697. doi: 10.3979/j.issn.1673-825X.2020.05.001
    [2] 张敏辉, 杨剑. 评价SAR图像去噪效果的无参考图像质量指标[J]. 重庆邮电大学学报:自然科学版, 2018, 30(4): 530–536. doi: 10.3979/j.issn.1673-825X.2018.04.014

    ZHANG Minhui and YANG Jian. A new referenceless image quality index to evaluate denoising performance of SAR images[J]. Journal of Chongqing University of Posts and Telecommunications:Natural Science Edition, 2018, 30(4): 530–536. doi: 10.3979/j.issn.1673-825X.2018.04.014
    [3] 徐弦秋, 刘宏清, 黎勇, 等. 基于RGB通道下模糊核估计的图像去模糊[J]. 重庆邮电大学学报:自然科学版, 2018, 30(2): 216–221. doi: 10.3979/j.issn.1673-825X.2018.02.009

    XU Xianqiu, LIU Hongqing, LI Yong, et al. Image deblurring with blur kernel estimation in RGB channels[J]. Journal of Chongqing University of Posts and Telecommunications:Natural Science Edition, 2018, 30(2): 216–221. doi: 10.3979/j.issn.1673-825X.2018.02.009
    [4] CHEN Yong, ZHU Kaixin, and LIU Huanlin. Blind stereo image quality assessment based on binocular visual characteristics and depth perception[J]. IEEE Access, 2020, 8: 85760–85771. doi: 10.1109/ACCESS.2020.2992746
    [5] DING Jian and SPERLING G. A gain-control theory of binocular combination[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(4): 1141–1146. doi: 10.1073/pnas.0509629103
    [6] DING Yong and ZHAO Yang. No-reference stereoscopic image quality assessment guided by visual hierarchical structure and binocular effects[J]. Applied Optics, 2018, 57(10): 2610–2621. doi: 10.1364/AO.57.002610
    [7] HACHICHA W, KAANICHE M, BEGHDADI A, et al. No-reference stereo image quality assessment based on joint wavelet decomposition and statistical models[J]. Signal Processing:Image Communication, 2017, 54: 107–117. doi: 10.1016/j.image.2017.03.005
    [8] LIU Lixiong, LIU Bao, SU Chechun, et al. Binocular spatial activity and reverse saliency driven no-reference stereopair quality assessment[J]. Signal Processing:Image Communication, 2017, 58: 287–299. doi: 10.1016/j.image.2017.08.011
    [9] DAKIN S C and BEX P J. Natural image statistics mediate brightness ‘filling in’[J]. Proceedings of the Royal Society B:Biological Sciences, 2003, 270(1531): 2341–2348. doi: 10.1098/rspb.2003.2528
    [10] 陈勇, 帅锋, 樊强. 基于自然统计特征分布的无参考图像质量评价[J]. 电子与信息学报, 2016, 38(7): 1645–1653. doi: 10.11999/JEIT151058

    CHEN Yong, SHUAI Feng, and FAN Qiang. A no-reference image quality assessment based on distribution characteristics of natural statistics[J]. Journal of Electronics &Information Technology, 2016, 38(7): 1645–1653. doi: 10.11999/JEIT151058
    [11] MOORTHY A K, SU Chechun, MITTAL A, et al. Subjective evaluation of stereoscopic image quality[J]. Signal Processing:Image Communication, 2013, 28(8): 870–883. doi: 10.1016/j.image.2012.08.004
    [12] RYU S and SOHN K. No-reference quality assessment for stereoscopic images based on binocular quality perception[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2014, 24(4): 591–602. doi: 10.1109/TCSVT.2013.2279971
    [13] ZHOU Jun, WANG Ling, YIN Haibing, et al. Eye movements and visual discomfort when viewing stereoscopic 3D content[J]. Digital Signal Processing, 2019, 91: 41–53. doi: 10.1016/j.dsp.2018.12.008
    [14] CHEN Mingjun, SU Chechun, KWON D K, et al. Full-reference quality assessment of stereopairs accounting for rivalry[J]. Signal Processing:Image Communication, 2013, 28(9): 1143–1155. doi: 10.1016/j.image.2013.05.006
    [15] MEEGAN D V, STELMACH L B, and TAM W J. Unequal weighting of monocular inputs in binocular combination: Implications for the compression of stereoscopic imagery[J]. Journal of Experimental Psychology:Applied, 2001, 7(2): 143–153. doi: 10.1037/1076-898X.7.2.143
    [16] SMITH III E L, FERN K, MANNY R, et al. Interocular suppression produced by rivalry stimuli: A comparison of normal and abnormal binocular vision[J]. Optometry and Vision Science:Official Publication of the American Academy of Optometry, 1994, 71(8): 479–491. doi: 10.1097/00006324-199408000-00001
    [17] FEZZA S A, CHETOUANI A, and LARABI M C. Using distortion and asymmetry determination for blind stereoscopic image quality assessment strategy[J]. Journal of Visual Communication and Image Representation, 2017, 49: 115–128. doi: 10.1016/j.jvcir.2017.08.009
    [18] WANG Zhou, BOVIK A C, SHEIKH H R, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600–612. doi: 10.1109/TIP.2003.819861
    [19] LAGO-FERNÁNDEZ L F and DECO G. A model of binocular rivalry based on competition in IT[J]. Neurocomputing, 2002, 44/46: 503–507. doi: 10.1016/S0925-2312(02)00408-3
    [20] SHEIKH H R and BOVIK A C. Image information and visual quality[J]. IEEE Transactions on Image Processing, 2006, 15(2): 430–444. doi: 10.1109/TIP.2005.859378
    [21] GEISLER W S. Visual perception and the statistical properties of natural scenes[J]. Annual Review of Psychology, 2008, 59: 167–192. doi: 10.1146/annurev.psych.58.110405.085632
    [22] WANG Jiheng, ZENG Kai, and WANG Zhou. Quality prediction of asymmetrically distorted stereoscopic images from single views[C]. 2014 IEEE International Conference on Multimedia and Expo, Chengdu, China, 2014: 1–6.
    [23] KHAN S and CHANNAPPAYYA S S. Estimating depth-salient edges and its application to stereoscopic image quality assessment[J]. IEEE Transactions on Image Processing, 2018, 27(12): 5892–5903. doi: 10.1109/TIP.2018.2860279
    [24] JIANG Gangyi, XU Haiyong, YU Mei, et al. Stereoscopic image quality assessment by learning non-negative matrix factorization-based color visual characteristics and considering binocular interactions[J]. Journal of Visual Communication and Image Representation, 2017, 46: 269–279. doi: 10.1016/j.jvcir.2017.04.010
    [25] MA Jian, AN Ping, and SHEN Liquan. Reduced-reference stereoscopic image quality assessment using natural scene statistics and structural degradation[J]. IEEE Access, 2018, 6: 2768–2780. doi: 10.1109/ACCESS.2017.2785282
    [26] KARIMI M, SOLTANIAN N, SAMAVI S, et al. Blind stereo image quality assessment inspired by brain sensory-motor fusion[J]. Digital Signal Processing, 2019, 91: 91–104. doi: 10.1016/j.dsp.2019.03.004
    [27] YANG Jiache, SIM K, LU Wen, et al. Predicting stereoscopic image quality via stacked auto-encoders based on stereopsis formation[J]. IEEE Transactions on Multimedia, 2019, 21(7): 1750–1761. doi: 10.1109/TMM.2018.2889562
    [28] MITTAL A, MOORTHY A K, and BOVIK A C. No-reference image quality assessment in the spatial domain[J]. IEEE Transactions on Image Processing, 2012, 21(12): 4695–4708. doi: 10.1109/TIP.2012.2214050
    [29] LIN Yancong, YANG Jiachen, LU Wen, et al. Quality index for stereoscopic images by jointly evaluating cyclopean amplitude and cyclopean phase[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(1): 89–101. doi: 10.1109/JSTSP.2016.2632422
    [30] ZHANG Wei, QU Chenfei, MA Lin, et al. Learning structure of stereoscopic image for no-reference quality assessment with convolutional neural network[J]. Pattern Recognition, 2016, 59: 176–187. doi: 10.1016/j.patcog.2016.01.034
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  794
  • HTML全文浏览量:  453
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-06
  • 修回日期:  2021-07-23
  • 网络出版日期:  2021-08-27
  • 刊出日期:  2021-10-18

目录

    /

    返回文章
    返回