Total Rotation Vector Estimation of Space Target Combining InISAR Imaging and Micro-Doppler Feature Extraction
-
摘要: 监测空间非合作目标的运动状态是空间监视的主要内容之一,也是进一步执行在轨操作的前提。失效卫星和空间碎片等有自身旋转运动,实施维修和抓捕的关键是准确获知目标转动矢量,包括转速和转轴方向。该文提出了一种空间非合作目标转动矢量估计方法,同时完成目标3维成像。首先利用干涉逆合成孔径雷达(InISAR)成像技术获得目标散射点的3维位置坐标以及有效转动矢量估计,然后利用微多普勒特征提取估计目标的总转速,继而通过联合有效转动矢量和总转速估计沿雷达视线方向上速度矢量未知的分量,求得目标的总转动矢量。多组仿真实验充分验证了所提方法的有效性,性能分析表明该方法可提供较准确的转动矢量估计,并可同时提供较好的3维成像结果。
-
关键词:
- 逆合成孔径雷达(ISAR) /
- 干涉ISAR(InISAR) /
- 转动矢量 /
- 微多普勒 /
- 3维成像
Abstract: One of the main purposes for space surveillance is to supervise the movement status of non-cooperative space targets, which is also the prerequisite for further on-orbit operations. Because of the rotation of disabled satellites and space debris, it is necessary to accurately obtain the rotation vector, including the rotation speed and the direction of the rotation axis. This paper proposes a novel estimation method to obtain the rotation vector of space targets, which can be simultaneously used to form the Three-Dimensional (3D) image. Firstly, the three-dimensional position coordinates and the effective rotation vector are obtained by the Interferometric Inverse Synthetic Aperture Radar (InISAR) technology. Then, the total rotation velocity is estimated by the micro-Doppler feature extraction. Finally, the total rotation vector is acquired by combining the effective rotation velocity and the rotation velocity along the radar Line-Of-Sight (LOS). The effectiveness of the proposed method is demonstrated by simulation experiments. Performance analysis shows that the method can provide us with accurate results in both rotation vector estimation and three-dimensional imaging. -
表 1 InISAR系统参数
参数 数值 参数 数值 $\lambda $ 3 cm PRF 1000 Hz B 400 MHz ${f_{\rm{c}}}$ 10 GHz ${T_{\rm{p}}}$ 10 μs $\varOmega $ 0.05 rad/s L 2.5 m ${\varOmega _{\rm{e}}}$ 0.04 rad/s SNR 15 dB ${R_{0}}$ 10 km 表 2 重建误差
参数 仿真设定值 估计值 误差数值 ${E_{3D}}$(m) / / 0.9286 $\phi $(rad) 0.1745 0.1775 0.0030 ${\varOmega _{\rm{e}}}$(rad/s) 0.0400 0.0399 0.0001 $\varOmega $(rad/s) 0.0500 0.0482 0.0018 表 3 转动矢量不同时的估计误差
$\phi $(rad) ${E_\phi }$(rad) ${E_\varOmega }$(rad/s) ${E_{{\varOmega _{\rm{e}}}}}$(rad/s) ${E_{3{\rm{D}}}}$(m) 0.1745 0.0030 0.0018 0.0001 0.9286 0.3491 0.0014 0.0018 0.0001 0.8837 0.5236 0.0059 0.0018 0.0001 0.8842 0.6981 0.0002 0.0018 0.0001 0.9121 0.8727 0.0007 0.0018 0.0006 0.9581 1.0472 0.0030 0.0018 0.0002 0.9957 -
FLORES-ABAD A, MA O, PHAM K, et al. A review of space robotics technologies for on-orbit servicing[J]. Progress in Aerospace Sciences, 2014, 68: 1–26. doi: 10.1016/j.paerosci.2014.03.002 BORRIELLO C and CASALINO L. Optimal rendezvous sequence for LEO debris capture[J]. Journal of Aerospace Science and Technology, 2015, 1: 27–35. doi: 10.17265/2332-8258/2015.01.004 ENDER J, LEUSHACKE L, BRENNER A, et al. Radar techniques for space situational awareness[C]. The 12th International Radar Symposium, Leipzig, Germany, 2011: 21–26. AUSHERMAN D A, KOZMA A, WALKER J L, et al. Developments in radar imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 1984, AES-20(4): 363–400. doi: 10.1109/TAES.1984.4502060 RONG Jiajia, WANG Yong, and HAN Tao. Interferometric ISAR imaging of maneuvering targets with arbitrary three-antenna configuration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(2): 1102–1119. doi: 10.1109/TGRS.2019.2943613 SALVETTI F, MARTORELLA M, GIUSTI E, et al. Multiview three-dimensional interferometric inverse synthetic aperture radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(2): 718–733. doi: 10.1109/TAES.2018.2864469 MARTORELLA M, STAGLIANO D, SALVETTI F, et al. 3D interferometric ISAR imaging of noncooperative targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(4): 3102–3114. doi: 10.1109/TAES.2014.130210 NG B W H, TRAN H T, MARTORELLA M, et al. Estimation of the total rotational velocity of a non-cooperative target with a high cross-range resolution three-dimensional interferometric inverse synthetic aperture radar system[J]. IET Radar, Sonar & Navigation, 2017, 11(6): 1020–1029. doi: 10.1049/iet-rsn.2016.0462 MARTINEZ J, THURN K, and VOSSIEK M. MIMO radar for supporting automated rendezvous maneuvers with non-cooperative satellites[C]. 2017 IEEE Radar Conference (RadarConf), Seattle, USA, 2017: 497–501. doi: 10.1109/RADAR.2017.7944254. WANG Yong, RONG Jiajia, and HAN Tao. Novel approach for high resolution ISAR/InISAR sensors imaging of maneuvering target based on peak extraction technique[J]. IEEE Sensors Journal, 2019, 19(14): 5541–5558. doi: 10.1109/jsen.2019.2905246 CHEN V C. The Micro-Doppler Effect in Radar[M]. 2nd ed. Norwood: Artech House, 2019: 35–83. LI Jian, WU Renbiao, and CHEN V C. Robust autofocus algorithm for ISAR imaging of moving targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(3): 1056–1069. doi: 10.1109/7.953256 刘承兰. 干涉逆合成孔径雷达(InISAR)三维成像技术研究[D]. [博士论文], 国防科学技术大学, 2012.LIU Chenglan. Research on inteferometric Inverse Synthetic Aperture Radar three-dimensional imaging[D]. [Ph. D. dissertation], National University of Defense Technology, 2012. TAN Xiaoheng, YANG Zhijun, LI Dong, et al. An efficient range-Doppler domain ISAR imaging approach for rapidly spinning targets[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(4): 2670–2681. doi: 10.1109/TGRS.2019.2953303 蔡璧丞. 基于电磁理论的失效卫星消旋策略研究[D]. [硕士论文], 哈尔滨工业大学, 2019.CAI Bicheng. The stategy research of detumbling an malfunction satellite by using electromagnetic theory[D]. [Master dissertation], Harbin Institute of Technology, 2019. ZHOU Yejian, ZHANG Lei, and CAO Yunhe. Dynamic estimation of spin spacecraft based on multiple-station ISAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(4): 2977–2989. doi: 10.1109/TGRS.2019.2959270 汪玲, 朱栋强, 马凯莉, 等. 空间目标卡尔曼滤波稀疏成像方法[J]. 电子与信息学报, 2018, 40(4): 846–852. doi: 10.11999/JEIT170319WANG Ling, ZHU Dongqiang, MA Kaili, et al. Sparse imaging of space targets using Kalman filter[J]. Journal of Electronics &Information Technology, 2018, 40(4): 846–852. doi: 10.11999/JEIT170319 马俊涛, 高梅国, 胡文华, 等. 空间目标多站ISAR优化布站与融合成像方法[J]. 电子与信息学报, 2017, 39(12): 2834–2843. doi: 10.11999/JEIT170482MA Juntao, GAO Meiguo, HU Wenhua, et al. Optimum distribution of multiple location ISAR and multi-angles fusion imaging for space target[J]. Journal of Electronics &Information Technology, 2017, 39(12): 2834–2843. doi: 10.11999/JEIT170482