高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种联合InISAR成像和微多普勒特征提取的空间目标转动矢量估计方法

宫蕊 汪玲 徐楚 朱岱寅

宫蕊, 汪玲, 徐楚, 朱岱寅. 一种联合InISAR成像和微多普勒特征提取的空间目标转动矢量估计方法[J]. 电子与信息学报, 2021, 43(3): 640-649. doi: 10.11999/JEIT200648
引用本文: 宫蕊, 汪玲, 徐楚, 朱岱寅. 一种联合InISAR成像和微多普勒特征提取的空间目标转动矢量估计方法[J]. 电子与信息学报, 2021, 43(3): 640-649. doi: 10.11999/JEIT200648
Rui GONG, Ling WANG, Chu XU, Daiyin ZHU. Total Rotation Vector Estimation of Space Target Combining InISAR Imaging and Micro-Doppler Feature Extraction[J]. Journal of Electronics & Information Technology, 2021, 43(3): 640-649. doi: 10.11999/JEIT200648
Citation: Rui GONG, Ling WANG, Chu XU, Daiyin ZHU. Total Rotation Vector Estimation of Space Target Combining InISAR Imaging and Micro-Doppler Feature Extraction[J]. Journal of Electronics & Information Technology, 2021, 43(3): 640-649. doi: 10.11999/JEIT200648

一种联合InISAR成像和微多普勒特征提取的空间目标转动矢量估计方法

doi: 10.11999/JEIT200648
基金项目: 国家自然科学基金(61871217),航空科学基金(20182052011)
详细信息
    作者简介:

    宫蕊:女,1997年生,博士生,主要研究方向为逆合成孔径雷达成像

    汪玲:女,1977年生,教授,博士生导师,主要研究方向为雷达信号处理、雷达成像、雷达图像处理

    徐楚:男,1994年生,硕士,主要研究方向为雷达成像

    朱岱寅:男,1974年生,教授,博士生导师,主要研究方向为雷达信号处理、雷达成像、雷达图像处理

    通讯作者:

    汪玲 tulip_wling@nuaa.edu.cn

  • 中图分类号: TN957

Total Rotation Vector Estimation of Space Target Combining InISAR Imaging and Micro-Doppler Feature Extraction

Funds: The National Natural Science Foundation of China(61871217), The Aeronautical Science Foundation of China (20182052011)
  • 摘要: 监测空间非合作目标的运动状态是空间监视的主要内容之一,也是进一步执行在轨操作的前提。失效卫星和空间碎片等有自身旋转运动,实施维修和抓捕的关键是准确获知目标转动矢量,包括转速和转轴方向。该文提出了一种空间非合作目标转动矢量估计方法,同时完成目标3维成像。首先利用干涉逆合成孔径雷达(InISAR)成像技术获得目标散射点的3维位置坐标以及有效转动矢量估计,然后利用微多普勒特征提取估计目标的总转速,继而通过联合有效转动矢量和总转速估计沿雷达视线方向上速度矢量未知的分量,求得目标的总转动矢量。多组仿真实验充分验证了所提方法的有效性,性能分析表明该方法可提供较准确的转动矢量估计,并可同时提供较好的3维成像结果。
  • 图  1  “L型”三天线InISAR 3维成像系统

    图  2  算法流程图

    图  3  卫星模型图

    图  4  卫星模型散射点3维图

    图  5  天线AC距离-多普勒(RD)2维成像结果

    图  6  天线AC使用CLEAN法的成像结果

    图  7  卫星目标3维成像结果图

    图  8  卫星目标1维距离像序列

    图  9  卫星目标距离单元回波微多普勒频谱图

    图  10  有效转动矢量方向转角为10°, 20°, 30°, 40°, 50°, 60°时CLEAN成像结果

    图  11  有效转动矢量方向转角为10°, 20°, 30°, 40°, 50°, 60°时3维成像结果

    表  1  InISAR系统参数

    参数数值参数数值
    $\lambda $3 cmPRF1000 Hz
    B400 MHz${f_{\rm{c}}}$10 GHz
    ${T_{\rm{p}}}$10 μs$\varOmega $0.05 rad/s
    L2.5 m${\varOmega _{\rm{e}}}$0.04 rad/s
    SNR15 dB${R_{0}}$10 km
    下载: 导出CSV

    表  2  重建误差

    参数仿真设定值估计值误差数值
    ${E_{3D}}$(m)//0.9286
    $\phi $(rad)0.17450.17750.0030
    ${\varOmega _{\rm{e}}}$(rad/s)0.04000.03990.0001
    $\varOmega $(rad/s)0.05000.04820.0018
    下载: 导出CSV

    表  3  转动矢量不同时的估计误差

    $\phi $(rad)${E_\phi }$(rad)${E_\varOmega }$(rad/s)${E_{{\varOmega _{\rm{e}}}}}$(rad/s)${E_{3{\rm{D}}}}$(m)
    0.17450.00300.00180.00010.9286
    0.34910.00140.00180.00010.8837
    0.52360.00590.00180.00010.8842
    0.69810.00020.00180.00010.9121
    0.87270.00070.00180.00060.9581
    1.04720.00300.00180.00020.9957
    下载: 导出CSV
  • FLORES-ABAD A, MA O, PHAM K, et al. A review of space robotics technologies for on-orbit servicing[J]. Progress in Aerospace Sciences, 2014, 68: 1–26. doi: 10.1016/j.paerosci.2014.03.002
    BORRIELLO C and CASALINO L. Optimal rendezvous sequence for LEO debris capture[J]. Journal of Aerospace Science and Technology, 2015, 1: 27–35. doi: 10.17265/2332-8258/2015.01.004
    ENDER J, LEUSHACKE L, BRENNER A, et al. Radar techniques for space situational awareness[C]. The 12th International Radar Symposium, Leipzig, Germany, 2011: 21–26.
    AUSHERMAN D A, KOZMA A, WALKER J L, et al. Developments in radar imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 1984, AES-20(4): 363–400. doi: 10.1109/TAES.1984.4502060
    RONG Jiajia, WANG Yong, and HAN Tao. Interferometric ISAR imaging of maneuvering targets with arbitrary three-antenna configuration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(2): 1102–1119. doi: 10.1109/TGRS.2019.2943613
    SALVETTI F, MARTORELLA M, GIUSTI E, et al. Multiview three-dimensional interferometric inverse synthetic aperture radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(2): 718–733. doi: 10.1109/TAES.2018.2864469
    MARTORELLA M, STAGLIANO D, SALVETTI F, et al. 3D interferometric ISAR imaging of noncooperative targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(4): 3102–3114. doi: 10.1109/TAES.2014.130210
    NG B W H, TRAN H T, MARTORELLA M, et al. Estimation of the total rotational velocity of a non-cooperative target with a high cross-range resolution three-dimensional interferometric inverse synthetic aperture radar system[J]. IET Radar, Sonar & Navigation, 2017, 11(6): 1020–1029. doi: 10.1049/iet-rsn.2016.0462
    MARTINEZ J, THURN K, and VOSSIEK M. MIMO radar for supporting automated rendezvous maneuvers with non-cooperative satellites[C]. 2017 IEEE Radar Conference (RadarConf), Seattle, USA, 2017: 497–501. doi: 10.1109/RADAR.2017.7944254.
    WANG Yong, RONG Jiajia, and HAN Tao. Novel approach for high resolution ISAR/InISAR sensors imaging of maneuvering target based on peak extraction technique[J]. IEEE Sensors Journal, 2019, 19(14): 5541–5558. doi: 10.1109/jsen.2019.2905246
    CHEN V C. The Micro-Doppler Effect in Radar[M]. 2nd ed. Norwood: Artech House, 2019: 35–83.
    LI Jian, WU Renbiao, and CHEN V C. Robust autofocus algorithm for ISAR imaging of moving targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(3): 1056–1069. doi: 10.1109/7.953256
    刘承兰. 干涉逆合成孔径雷达(InISAR)三维成像技术研究[D]. [博士论文], 国防科学技术大学, 2012.

    LIU Chenglan. Research on inteferometric Inverse Synthetic Aperture Radar three-dimensional imaging[D]. [Ph. D. dissertation], National University of Defense Technology, 2012.
    TAN Xiaoheng, YANG Zhijun, LI Dong, et al. An efficient range-Doppler domain ISAR imaging approach for rapidly spinning targets[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(4): 2670–2681. doi: 10.1109/TGRS.2019.2953303
    蔡璧丞. 基于电磁理论的失效卫星消旋策略研究[D]. [硕士论文], 哈尔滨工业大学, 2019.

    CAI Bicheng. The stategy research of detumbling an malfunction satellite by using electromagnetic theory[D]. [Master dissertation], Harbin Institute of Technology, 2019.
    ZHOU Yejian, ZHANG Lei, and CAO Yunhe. Dynamic estimation of spin spacecraft based on multiple-station ISAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(4): 2977–2989. doi: 10.1109/TGRS.2019.2959270
    汪玲, 朱栋强, 马凯莉, 等. 空间目标卡尔曼滤波稀疏成像方法[J]. 电子与信息学报, 2018, 40(4): 846–852. doi: 10.11999/JEIT170319

    WANG Ling, ZHU Dongqiang, MA Kaili, et al. Sparse imaging of space targets using Kalman filter[J]. Journal of Electronics &Information Technology, 2018, 40(4): 846–852. doi: 10.11999/JEIT170319
    马俊涛, 高梅国, 胡文华, 等. 空间目标多站ISAR优化布站与融合成像方法[J]. 电子与信息学报, 2017, 39(12): 2834–2843. doi: 10.11999/JEIT170482

    MA Juntao, GAO Meiguo, HU Wenhua, et al. Optimum distribution of multiple location ISAR and multi-angles fusion imaging for space target[J]. Journal of Electronics &Information Technology, 2017, 39(12): 2834–2843. doi: 10.11999/JEIT170482
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  1045
  • HTML全文浏览量:  186
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-30
  • 修回日期:  2021-02-08
  • 网络出版日期:  2021-02-20
  • 刊出日期:  2021-03-22

目录

    /

    返回文章
    返回