高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

流形学习在浅海水声通信中的应用

吕志超 王好忠 白一奇

吕志超, 王好忠, 白一奇. 流形学习在浅海水声通信中的应用[J]. 电子与信息学报, 2021, 43(3): 767-772. doi: 10.11999/JEIT200629
引用本文: 吕志超, 王好忠, 白一奇. 流形学习在浅海水声通信中的应用[J]. 电子与信息学报, 2021, 43(3): 767-772. doi: 10.11999/JEIT200629
Zhichao LÜ, Haozhong WANG, Yiqi BAI. Application of Manifold Learning to Shallow Water Acoustic Communication[J]. Journal of Electronics & Information Technology, 2021, 43(3): 767-772. doi: 10.11999/JEIT200629
Citation: Zhichao LÜ, Haozhong WANG, Yiqi BAI. Application of Manifold Learning to Shallow Water Acoustic Communication[J]. Journal of Electronics & Information Technology, 2021, 43(3): 767-772. doi: 10.11999/JEIT200629

流形学习在浅海水声通信中的应用

doi: 10.11999/JEIT200629
详细信息
    作者简介:

    吕志超:男,1988年生,博士后,研究方向为水声通信及声场分析

    王好忠:男,1976年生,高级工程师,硕士生导师,研究方向水声信号处理与水声探测技术

    白一奇:男,1992年生,博士生,研究方向为水声通信

    通讯作者:

    吕志超 lvzhichao@ouc.edu.cn

  • 中图分类号: TB567

Application of Manifold Learning to Shallow Water Acoustic Communication

  • 摘要: 在复杂的浅海环境中,水声信道具有强烈的空变和时变特性,致使水声通信系统的鲁棒性很难得到保证。该文不同于依赖复杂信道编码和信道均衡手段的传统水声通信算法,将流形学习思想应用于高维海洋环境参数空间刻画及信号空间映射中,为水下数据传输提出创新方案。从声场角度出发,结合浅海实验数据,分析通信信号时空起伏特性,研究环境参数空间和声场信号空间的内在关系,提出了基于非线性流形学习算法增加合理的物理约束,结合信道稀疏特性,对于高维非线性水声信号系统的冗余维度信息进行维数约简,映射到稳定的低维目标空间,降低信道时空起伏对通信系统的影响。仿真和实验结果验证了算法的可靠性和有效性。
  • 图  1  不同阵列的信噪比随深度变化图

    图  2  信噪比时空变化范围统计图

    图  3  PCA和LTSA降维效果图

    图  4  声场实验示意图

    图  5  12 kHz信号在不同水平距离时空分布图

    图  6  水声通信实验示意图

    图  7  不同阵元信号结构图

    图  8  不同深度信号起伏状态

    表  1  实验参数设置

    参数参数值参数参数值
    采样频率(kHz)48FFT点数1024
    频率范围(kHz)8~16码率1/2
    信道编码LDPC带宽(kHz)8
    映射方式QPSK符号时长(ms)128
    下载: 导出CSV
  • 惠俊英. 水下声信道[M]. 北京: 国防工业出版社, 1992: 179.
    LI Qihu, WANG Lei, WEI Chonghua, et al. Theoretical analysis and experimental results of interference striation pattern of underwater target radiated noise in shallow water waveguide[J]. Chinese Journal of Acoustics, 2011, 30(1): 73–80. doi: 10.15949/j.cnki.0217-9776.2011.01.002
    WANG Huakui, ZHAO Ye, WU Bi, et al. Estimation of source parameters based on underwater acoustic interference pattern in shallow water[C]. 2011 IEEE International Conference on Signal Processing, Communications and Computing, Xi'an, China, 2011: 1–4.
    陈守虎, 赵连军, 曹建国, 等. 浅水近距离测量声场的干涉结构分析[J]. 声学学报, 2017, 42(2): 129–142. doi: 10.15949/j.cnki.0371-0025.2017.02.001

    CHEN Shouhu, ZHAO Lianjun, CAO Jianguo, et al. Analytical study on acoustic interference pattern in shallow water[J]. Acta Acustica, 2017, 42(2): 129–142. doi: 10.15949/j.cnki.0371-0025.2017.02.001
    WOLD S, ESBENSEN K, and GELADI P. Principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1987, 2(1/3): 37–52.
    COX T F and COX M A A. Multidimensional Scaling[M]. 2nd ed. New York: Chapman & Hall/CRC, 2000.
    ROWEIS S T and SAUL L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500): 2323–2326. doi: 10.1126/science.290.5500.2323
    BELKIN M and NIYOGI P. Laplacian eigenmaps for dimensionality reduction and data representation[J]. Neural Computation, 2003, 15(6): 1373–1396. doi: 10.1162/089976603321780317
    DONOHO D L and GRIMES C. Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(10): 5591–5596. doi: 10.1073/pnas.1031596100
    ZHANG Zhenyue and ZHA Hongyuan. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment[J]. SIAM Journal on Scientific Computing, 2004, 26(1): 313–338. doi: 10.1137/S1064827502419154
    YANG Jian, LI Fuxin, and WANG Jue. A better scaled local tangent space alignment algorithm[C]. 2005 IEEE International Joint Conference on Neural Networks, Montreal, Canada, 2005: 1006–1011. doi: 10.1109/IJCNN.2005.1555990.
    BAQAR M and ZAIDI S S H. Performance evaluation of linear and multi-linear subspace learning techniques for object classification based on underwater acoustics[C]. The 14th International Bhurban Conference on Applied Sciences and Technology (IBCAST), Islamabad, Pakistan, 2017: 675–683.
    ZHUANG Honghai, LIU Guoguo, ZHANG Xuewu, et al. Dimensionality reduction based on feature points of underwater image mosaic algorithm[J]. Applied Mechanics and Materials, 2013, 462/463: 308–311. doi: 10.4028/www.scientific.net/AMM.462-463.308
    管鲁阳, 鲍明, 张鹏, 等. 基于流形学习的单类分类算法及其在不均衡声目标识别中的应用[J]. 声学学报, 2009, 34(1): 67–73. doi: 10.3321/j.issn:0371-0025.2009.01.010

    GUAN Luyang, BAO Ming, ZHANG Peng, et al. One-class classification algorithm based on manifold learning and its application to imbalanced acoustic target recognition[J]. Acta Acustica, 2009, 34(1): 67–73. doi: 10.3321/j.issn:0371-0025.2009.01.010
    梁春燕, 袁文浩, 李艳玲, 等. 基于判别邻域嵌入算法的说话人识别[J]. 电子与信息学报, 2019, 41(7): 1774–1778. doi: 10.11999/JEIT180761

    LIANG Chunyan, YUAN Wenhao, LI Yanling, et al. Speaker recognition using discriminant neighborhood embedding[J]. Journal of Electronics &Information Technology, 2019, 41(7): 1774–1778. doi: 10.11999/JEIT180761
    刘辉, 杨俊安, 王一. 基于流形学习的声目标特征提取方法研究[J]. 物理学报, 2011, 60(7): 437–443. doi: 10.7498/aps.60.074302

    LIU Hui, YANG Junan, and WANG Yi. A novel approach to research on feature extraction of acoustic targets based on manifold learning[J]. Acta Physica Sinica, 2011, 60(7): 437–443. doi: 10.7498/aps.60.074302
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  1211
  • HTML全文浏览量:  351
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-28
  • 修回日期:  2021-02-07
  • 网络出版日期:  2021-02-18
  • 刊出日期:  2021-03-22

目录

    /

    返回文章
    返回