Howling Removal Based on Analytical Design of All-phase Notch Filter
-
摘要: 为了快速且精准地抑制助听器中的啸叫效应,该文提出一种中心频率可以精确控制的全相位有限脉冲响应(FIR)陷波器解析设计。首先,为了获得较高的陷波精度,引入了整数部分m和小数部分λ来控制陷波的中心频率。然后,设计了一个偶对称的闭式解析式来计算陷波器系数。最后,为了保证输出信号的连续性和线性相位,进行数据延拓和截取操作。该陷波器具有线性传输特性,避免了非线性失真。为了检验陷波器的滤波性能,将其应用在助听器中去除啸叫。实验结果表明,该滤波器在啸叫频率下的衰减值可达–330 dB,信噪比达22 dB,输出波形质量好,算法复杂度低,鲁棒性高,具有一定的应用前景。Abstract: In order to quickly and accurately suppress the howling effect in hearing aids, this paper presents an analytical design of all-phase Finite Impulse Response(FIR) notch filter with explicit controllable center frequency. Firstly, to obtain the higher accuracy, integer m and decimal λ are introduced to control the central frequency of the notch filter. Then, an even symmetric closed-form analytic formula is designed to complete the design of the notch filter, which shows that the proposed notch filter has linear transmission characteristics and avoids nonlinear distortion. Finally, data extension and interception are carried out to ensure the continuity and linear phase of the output signal. Herein, the proposed notch filter is inserted into hearing aid to suppress the howling for the sake of verifying its performances. The experimental results show that the attenuation value of the proposed filter at the howling frequency can reach –330 dB, and the SNR is 22 dB. Moreover, the proposed filter is of good output waveform quality, low algorithm complexity and high robustness, and it has a certain application prospect.
-
表 1 啸叫频率f0与SNR(N=32)
f0(Hz) SNR(dB) f0(Hz) SNR(dB) 1290 21.2816 2490 22.1826 1590 21.9162 2790 22.1217 1890 21.9733 3090 22.0438 2190 22.1121 3390 22.0071 表 2 陷波器阶数N与SNR(f0=1590 Hz)
阶数N SNR(dB) 阶数N SNR(dB) 32 21.9162 256 22.4311 64 21.8347 512 22.8120 128 21.7462 1024 20.9697 -
[1] JINDAPETCH N, CHEWAE S, and PHUKPATTARANONT P. FPGA implementations of an ADALINE adaptive filter for power-line noise cancellation in surface electromyography signals[J]. Measurement, 2012, 45(3): 405–414. doi: 10.1016/j.measurement.2011.11.004 [2] MAHMOODI S N, CRAFT M J, SOUTHWARD S C, et al. Active vibration control using optimized modified acceleration feedback with adaptive line enhancer for frequency tracking[J]. Journal of Sound and Vibration, 2011, 330(7): 1300–1311. doi: 10.1016/j.jsv.2010.10.013 [3] PASCO Y, ROBIN O, BÉLANGER P, et al. Multi-input multi-output feedforward control of multi-harmonic gearbox vibrations using parallel adaptive notch filters in the principal component space[J]. Journal of Sound and Vibration, 2011, 330(22): 5230–5244. doi: 10.1016/j.jsv.2011.06.008 [4] 肖玮, 涂亚庆, 刘良兵, 等. 频率估计的差频等长信号加权融合算法[J]. 信号处理, 2011, 27(7): 1106–1111. doi: 10.3969/j.issn.1003-0530.2011.07.023XIAO Wei, TU Yaqing, LIU Liangbing, et al. A weight-fusion algorithm for frequency estimation of the signal with the known frequency-difference and the same length[J]. Signal Processing, 2011, 27(7): 1106–1111. doi: 10.3969/j.issn.1003-0530.2011.07.023 [5] FENG Y Q, TANG G C, LIANG R Y, et al. An improved echo cancellation algorithm for hearing aids[C]. The 2015 International Conference on Electronics, Electrical Engineering and Information Science (EEEIS2015), Guangzhou, China, 2016: 362–369. doi: 10.1142/9789814740135_0038. [6] LIANG Ruiyu, WANG Xia, WANG Qingyun, et al. A joint echo cancellation algorithm for quick suppression of howls in hearing aids[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2017, 12(4): 565–574. doi: 10.1002/tee.22412 [7] VAN WATERSCHOOT T and MOONEN M. Fifty years of acoustic feedback control: State of the art and future challenges[J]. Proceedings of the IEEE, 2011, 99(2): 288–327. doi: 10.1109/JPROC.2010.2090998 [8] ZAHRADNIK P and VLCEK M. Fast analytical design algorithms for FIR notch filters[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2004, 51(3): 608–623. doi: 10.1109/TCSI.2003.822404 [9] LAI Xiaoping. Constrained Chebyshev design of FIR filters[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2004, 51(3): 143–146. doi: 10.1109/TCSII.2003.821523 [10] 孙小君, 周晗, 闫广明. 基于新息的自适应增量Kalman滤波器[J]. 电子与信息学报, 2020, 42(9): 2223–2230. doi: 10.11999/JEIT190493SUN Xiaojun, ZHOU Han, and YAN Guangming. New information based adaptive incremental Kalman filter[J]. Journal of Electronics &Information Technology, 2020, 42(9): 2223–2230. doi: 10.11999/JEIT190493 [11] 维纳·K. 恩格尔, 约翰·G. 普罗克斯, 刘树棠, 译. 数字信号处理: 使用MATLAB[M]. 西安: 西安交通大学出版社, 2002: 181–188.INGLE V K and PROAKIS J G, LIU Shutang, translation. Digital Signal Processing[M]. Xi’an: Xi’an Jiaotong University Press, 2002: 181–188. [12] PRIOAKIS J G and MANOLAKIS D G. Digital Signal Processing: Principle, Algorithms, and Application[M]. New Jersey: Prentice Hall, 2006: 112–114. [13] PUNCHALARD R, LORSAWATSIRI A, KOSEEYAPORN J, et al. Adaptive IIR notch filters based on new error criteria[J]. Signal Processing, 2008, 88(3): 685–703. doi: 10.1016/j.sigpro.2007.09.010 [14] 涂亚庆, 苏奋华, 沈廷鳌, 等. 自适应陷波器的科氏流量计信号频率跟踪方法[J]. 重庆大学学报, 2011, 34(10): 147–152.TU Yaqing, SU Fenhua, SHEN Tingao, et al. Frequency tracking method and simulation for Coriolis mass flowmter based on a new adaptive notch filter[J]. Journal of Chongqing University, 2011, 34(10): 147–152. [15] HUANG Xiangdong, JING Senxue, WANG Zhaohua, et al. Closed-form FIR filter design based on convolution window spectrum interpolation[J]. IEEE Transactions on Signal Processing, 2016, 64(5): 1173–1186. doi: 10.1109/TSP.2015.2494869 [16] 黄翔东, 王兆华. 基于两种对称频率采样的全相位FIR滤波器设计[J]. 电子与信息学报, 2007, 29(2): 478–481.HUANG Xiangdong and WANG Zhaohua. All-phase FIR filter design based on two kinds of symmetric frequency sampling[J]. Journal of Electronics &Information Technology, 2007, 29(2): 478–481. [17] CARNEY R. Design of a digital notch filter with tracking requirements[J]. IEEE Transactions on Space Electronics and Telemetry, 1963, 9(4): 109–114. doi: 10.1109/tset.1963.4337624 [18] LEOTWASSANA W, PUNCHALARD R, and SILAPHAN W. Adaptive howling canceller using adaptive IIR notch filter: Simulation and implementation[C]. Proceedings of 2003 International Conference on Neural Networks and Signal Processing, Nanjing, China, 2003: 848–851. doi: 10.1109/ICNNSP.2003.1279409.