高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于全相位陷波器解析设计的啸叫去除

黄翔东 高月

黄翔东, 高月. 基于全相位陷波器解析设计的啸叫去除[J]. 电子与信息学报, 2021, 43(10): 3043-3049. doi: 10.11999/JEIT200623
引用本文: 黄翔东, 高月. 基于全相位陷波器解析设计的啸叫去除[J]. 电子与信息学报, 2021, 43(10): 3043-3049. doi: 10.11999/JEIT200623
Xiangdong HUANG, Yue GAO. Howling Removal Based on Analytical Design of All-phase Notch Filter[J]. Journal of Electronics & Information Technology, 2021, 43(10): 3043-3049. doi: 10.11999/JEIT200623
Citation: Xiangdong HUANG, Yue GAO. Howling Removal Based on Analytical Design of All-phase Notch Filter[J]. Journal of Electronics & Information Technology, 2021, 43(10): 3043-3049. doi: 10.11999/JEIT200623

基于全相位陷波器解析设计的啸叫去除

doi: 10.11999/JEIT200623
基金项目: 国家自然科学基金(61671012)
详细信息
    作者简介:

    黄翔东:男,1979年生,博士,教授,博士生导师,研究方向为滤波器设计、频谱分析等

    高月:女,1996年生,硕士生,研究方向为滤波器设计等

    通讯作者:

    黄翔东 xdhuang@tju.edu.cn

  • 中图分类号: TN 911.72

Howling Removal Based on Analytical Design of All-phase Notch Filter

Funds: The National Natural Science Foundation of China (61671012)
  • 摘要: 为了快速且精准地抑制助听器中的啸叫效应,该文提出一种中心频率可以精确控制的全相位有限脉冲响应(FIR)陷波器解析设计。首先,为了获得较高的陷波精度,引入了整数部分m和小数部分λ来控制陷波的中心频率。然后,设计了一个偶对称的闭式解析式来计算陷波器系数。最后,为了保证输出信号的连续性和线性相位,进行数据延拓和截取操作。该陷波器具有线性传输特性,避免了非线性失真。为了检验陷波器的滤波性能,将其应用在助听器中去除啸叫。实验结果表明,该滤波器在啸叫频率下的衰减值可达–330 dB,信噪比达22 dB,输出波形质量好,算法复杂度低,鲁棒性高,具有一定的应用前景。
  • 图  1  子滤波器${{\boldsymbol{g}}_1{'}}$${{\boldsymbol{g}}_2{'}}$的传输曲线(N=16, m=3)

    图  2  点通滤波器传输曲线(N=16, m=3, λ=0.3)

    图  3  陷波器传输曲线(N=16, m=3, λ=0.3)

    图  4  含陷波器的助听器模型图

    图  5  传统陷波器频率响应图

    图  6  本文提出的闭式FIR陷波器频率响应图

    图  7  经IIR陷波器滤波的信号波形图

    图  8  经闭式FIR陷波器滤波的信号波形图

    图  9  经闭式FIR陷波器滤波的信号波形图及子段放大图

    表  1  啸叫频率f0与SNR(N=32)

    f0(Hz)SNR(dB)f0(Hz)SNR(dB)
    129021.2816249022.1826
    159021.9162279022.1217
    189021.9733309022.0438
    219022.1121339022.0071
    下载: 导出CSV

    表  2  陷波器阶数N与SNR(f0=1590 Hz)

    阶数NSNR(dB)阶数NSNR(dB)
    3221.916225622.4311
    6421.834751222.8120
    12821.7462102420.9697
    下载: 导出CSV
  • [1] JINDAPETCH N, CHEWAE S, and PHUKPATTARANONT P. FPGA implementations of an ADALINE adaptive filter for power-line noise cancellation in surface electromyography signals[J]. Measurement, 2012, 45(3): 405–414. doi: 10.1016/j.measurement.2011.11.004
    [2] MAHMOODI S N, CRAFT M J, SOUTHWARD S C, et al. Active vibration control using optimized modified acceleration feedback with adaptive line enhancer for frequency tracking[J]. Journal of Sound and Vibration, 2011, 330(7): 1300–1311. doi: 10.1016/j.jsv.2010.10.013
    [3] PASCO Y, ROBIN O, BÉLANGER P, et al. Multi-input multi-output feedforward control of multi-harmonic gearbox vibrations using parallel adaptive notch filters in the principal component space[J]. Journal of Sound and Vibration, 2011, 330(22): 5230–5244. doi: 10.1016/j.jsv.2011.06.008
    [4] 肖玮, 涂亚庆, 刘良兵, 等. 频率估计的差频等长信号加权融合算法[J]. 信号处理, 2011, 27(7): 1106–1111. doi: 10.3969/j.issn.1003-0530.2011.07.023

    XIAO Wei, TU Yaqing, LIU Liangbing, et al. A weight-fusion algorithm for frequency estimation of the signal with the known frequency-difference and the same length[J]. Signal Processing, 2011, 27(7): 1106–1111. doi: 10.3969/j.issn.1003-0530.2011.07.023
    [5] FENG Y Q, TANG G C, LIANG R Y, et al. An improved echo cancellation algorithm for hearing aids[C]. The 2015 International Conference on Electronics, Electrical Engineering and Information Science (EEEIS2015), Guangzhou, China, 2016: 362–369. doi: 10.1142/9789814740135_0038.
    [6] LIANG Ruiyu, WANG Xia, WANG Qingyun, et al. A joint echo cancellation algorithm for quick suppression of howls in hearing aids[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2017, 12(4): 565–574. doi: 10.1002/tee.22412
    [7] VAN WATERSCHOOT T and MOONEN M. Fifty years of acoustic feedback control: State of the art and future challenges[J]. Proceedings of the IEEE, 2011, 99(2): 288–327. doi: 10.1109/JPROC.2010.2090998
    [8] ZAHRADNIK P and VLCEK M. Fast analytical design algorithms for FIR notch filters[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2004, 51(3): 608–623. doi: 10.1109/TCSI.2003.822404
    [9] LAI Xiaoping. Constrained Chebyshev design of FIR filters[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2004, 51(3): 143–146. doi: 10.1109/TCSII.2003.821523
    [10] 孙小君, 周晗, 闫广明. 基于新息的自适应增量Kalman滤波器[J]. 电子与信息学报, 2020, 42(9): 2223–2230. doi: 10.11999/JEIT190493

    SUN Xiaojun, ZHOU Han, and YAN Guangming. New information based adaptive incremental Kalman filter[J]. Journal of Electronics &Information Technology, 2020, 42(9): 2223–2230. doi: 10.11999/JEIT190493
    [11] 维纳·K. 恩格尔, 约翰·G. 普罗克斯, 刘树棠, 译. 数字信号处理: 使用MATLAB[M]. 西安: 西安交通大学出版社, 2002: 181–188.

    INGLE V K and PROAKIS J G, LIU Shutang, translation. Digital Signal Processing[M]. Xi’an: Xi’an Jiaotong University Press, 2002: 181–188.
    [12] PRIOAKIS J G and MANOLAKIS D G. Digital Signal Processing: Principle, Algorithms, and Application[M]. New Jersey: Prentice Hall, 2006: 112–114.
    [13] PUNCHALARD R, LORSAWATSIRI A, KOSEEYAPORN J, et al. Adaptive IIR notch filters based on new error criteria[J]. Signal Processing, 2008, 88(3): 685–703. doi: 10.1016/j.sigpro.2007.09.010
    [14] 涂亚庆, 苏奋华, 沈廷鳌, 等. 自适应陷波器的科氏流量计信号频率跟踪方法[J]. 重庆大学学报, 2011, 34(10): 147–152.

    TU Yaqing, SU Fenhua, SHEN Tingao, et al. Frequency tracking method and simulation for Coriolis mass flowmter based on a new adaptive notch filter[J]. Journal of Chongqing University, 2011, 34(10): 147–152.
    [15] HUANG Xiangdong, JING Senxue, WANG Zhaohua, et al. Closed-form FIR filter design based on convolution window spectrum interpolation[J]. IEEE Transactions on Signal Processing, 2016, 64(5): 1173–1186. doi: 10.1109/TSP.2015.2494869
    [16] 黄翔东, 王兆华. 基于两种对称频率采样的全相位FIR滤波器设计[J]. 电子与信息学报, 2007, 29(2): 478–481.

    HUANG Xiangdong and WANG Zhaohua. All-phase FIR filter design based on two kinds of symmetric frequency sampling[J]. Journal of Electronics &Information Technology, 2007, 29(2): 478–481.
    [17] CARNEY R. Design of a digital notch filter with tracking requirements[J]. IEEE Transactions on Space Electronics and Telemetry, 1963, 9(4): 109–114. doi: 10.1109/tset.1963.4337624
    [18] LEOTWASSANA W, PUNCHALARD R, and SILAPHAN W. Adaptive howling canceller using adaptive IIR notch filter: Simulation and implementation[C]. Proceedings of 2003 International Conference on Neural Networks and Signal Processing, Nanjing, China, 2003: 848–851. doi: 10.1109/ICNNSP.2003.1279409.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  1190
  • HTML全文浏览量:  513
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-27
  • 修回日期:  2020-12-15
  • 网络出版日期:  2021-01-05
  • 刊出日期:  2021-10-18

目录

    /

    返回文章
    返回