高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于角多普勒效应的自旋目标微动特征提取

李瑞 李开明 张群 梁佳 罗迎

李瑞, 李开明, 张群, 梁佳, 罗迎. 基于角多普勒效应的自旋目标微动特征提取[J]. 电子与信息学报, 2021, 43(3): 547-554. doi: 10.11999/JEIT200595
引用本文: 李瑞, 李开明, 张群, 梁佳, 罗迎. 基于角多普勒效应的自旋目标微动特征提取[J]. 电子与信息学报, 2021, 43(3): 547-554. doi: 10.11999/JEIT200595
Rui LI, Kaiming LI, Qun ZHANG, Jia LIANG, Ying LUO. Micro-Motion Feature Extraction of Spinning Target Based on Angular Doppler Effect[J]. Journal of Electronics & Information Technology, 2021, 43(3): 547-554. doi: 10.11999/JEIT200595
Citation: Rui LI, Kaiming LI, Qun ZHANG, Jia LIANG, Ying LUO. Micro-Motion Feature Extraction of Spinning Target Based on Angular Doppler Effect[J]. Journal of Electronics & Information Technology, 2021, 43(3): 547-554. doi: 10.11999/JEIT200595

基于角多普勒效应的自旋目标微动特征提取

doi: 10.11999/JEIT200595
基金项目: 国家自然科学基金(61971434, 61631019, 61701530),陕西省自然科学基础研究计划项目(2020JM-348)
详细信息
    作者简介:

    李瑞:男,1992年生,博士生,研究方向为雷达关联成像

    李开明:男,1982年生,讲师,研究方向为雷达信号处理、目标识别

    通讯作者:

    李瑞 liruimissing@163.com

  • 中图分类号: TN957.52

Micro-Motion Feature Extraction of Spinning Target Based on Angular Doppler Effect

Funds: The National Natural Science Foundation of China(61971434, 61631019, 61701530), The Natural Science Basic Research Program of Shaanxi Province (2020JM-348)
  • 摘要: 携带有轨道角动量(OAM)的涡旋电磁(EM)波在雷达应用领域已经受到了广泛关注,利用涡旋电磁波,不仅可以观测到目标的线多普勒频移,还能够获取角多普勒频移信息。基于角多普勒效应,涡旋电磁波雷达具有检测垂直于径向运动分量的能力,可以实现对自旋目标微动特征的提取。首先,该文建立直角坐标系下角多普勒频移的参数化模型,给出了涡旋电磁波雷达、目标运动参数与角多普勒频移之间的定量关系描述。其次,当目标自旋轨迹垂直雷达视线(LOS)方向时,对获取的角多普勒频移信息进行分析,并提取了自旋目标微动特征。最后,通过仿真实验验证了所提方法的有效性和分析的准确性。
  • 图  1  UCA雷达和目标空间几何示意图

    图  2  P平动和自旋运动等效几何示意图

    图  3  $\Delta t$时间内,点P运动等效几何示意图

    图  4  线、角多普勒效应对比

    图  5  角多普勒频移理论值和观测值对比

    图  6  角多普勒频移与其上、下确界关系曲线

    图  7  自旋目标角多普勒频移时频分析结果

    图  8  旋转频率和半径的归一化均方误差绝对值的变化曲线

    表  1  相关参数设置

    参数名称参数值
    频率${f_0}$10 GHz
    波长$\lambda $0.03 m
    OAM模态$\alpha $50
    采样频率${f_s}$25.6 kHz
    旋转中心Q(1 km, π/30 rad, π/3 rad)T
    散射点P(0.8 m, 8π/15 rad, π/3 rad)T
    旋转频率$\varOmega $40 Hz
    旋转半径${r_0}$0.8 m
    速度大小$v$100 m/s
    下载: 导出CSV
  • GIBSON G, COURTIAL J, PADGETT M J, et al. Free-space information transfer using light beams carrying orbital angular momentum[J]. Optics Express, 2004, 12(25): 5448–5456. doi: 10.1364/OPEX.12.005448
    CHEN Rui, XU Hui, MORETTI M, et al. Beam steering for the misalignment in UCA-based OAM communication systems[J]. IEEE Wireless Communications Letters, 2018, 7(4): 582–585. doi: 10.1109/LWC.2018.2797931
    CHEN Rui, YANG Wenhai, XU Hui, et al. A 2-D FFT-based transceiver architecture for OAM-OFDM systems with UCA antennas[J]. IEEE Transactions on Vehicular Technology, 2018, 67(6): 5481–5485. doi: 10.1109/TVT.2018.2817230
    ZHANG Weite, ZHENG Shilie, HUI Xiaonan, et al. Mode division multiplexing communication using microwave orbital angular momentum: An experimental study[J]. IEEE Transactions on Wireless Communications, 2017, 16(2): 1308–1318. doi: 10.1109/TWC.2016.2645199
    CHEN Rui, LONG Wenxuan, GAO Yue, et al. Orbital angular momentum-based two-dimensional super-resolution targets imaging[C]. 2018 IEEE Global Conference on Signal and Information Processing, Anaheim, USA, 2018: 26–29. doi: 10.1109/GlobalSIP.2018.8646368.
    WANG Jianqiu, LIU Kang, CHENG Yongqiang, et al. Three-dimensional target imaging based on vortex stripmap SAR[J]. IEEE Sensors Journal, 2019, 19(4): 1338–1345. doi: 10.1109/JSEN.2018.2879814
    BU Xiangxi, ZHANG Zhuo, CHEN Longyong, et al. Implementation of vortex electromagnetic waves high-resolution synthetic aperture radar imaging[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(5): 764–767. doi: 10.1109/LAWP.2018.2814980
    LI Rui, LUO Ying, ZHANG Qun, et al. Electromagnetic vortex imaging based on multiple measurement vectors in low SNR condition[C]. 2019 IEEE International Conference on Computational Electromagnetics, Shanghai, China, 2019: 1–3. doi: 10.1109/COMPEM.2019.8778927.
    LIU Kang, CHENG Yongqiang, YANG Zhaocheng, et al. Orbital-angular-momentum-based electromagnetic vortex imaging[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 14: 711–714. doi: 10.1109/LAWP.2014.2376970
    YUAN Tiezhu, WANG Hongqiang, QIN Yuliang, et al. Electromagnetic vortex imaging using uniform concentric circular arrays[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 15: 1024–1027. doi: 10.1109/LAWP.2015.2490169
    YANG Tao and WANG Gang. Rotational Doppler shift for electromagnetic waves carrying orbital angular momentum based on spectrum analysis[J]. AIP Conference Proceedings, 2017, 1820(1): 090024. doi: 10.1063/1.4977408
    LIU Kang, CHENG Yongqiang, LI Xiang, et al. Spinning target detection using OAM-based radar[C]. 2017 International Workshop on Electromagnetics: Applications and Student Innovation Competition, London, UK, 2017: 29–30. doi: 10.1109/iWEM.2017.7968760.
    ZHOU Zhenglong, CHENG Yongqiang, LIU Kang, et al. Rotational Doppler resolution of spinning target detection based on OAM beams[J]. IEEE Sensors Letters, 2019, 3(3): 5500404. doi: 10.1109/LSENS.2019.2900227
    GONG Ting, CHENG Yongqiang, LI Xiang, et al. Micromotion detection of moving and spinning object based on rotational Doppler shift[J]. IEEE Microwave and Wireless Components Letters, 2018, 28(9): 843–845. doi: 10.1109/LMWC.2018.2858552
    GARETZ B A. Angular Doppler effect[J]. Journal of the Optical Society of America, 1981, 71(5): 609–611. doi: 10.1364/JOSA.71.000609
    BARREIRO S, TABOSA J W R, FAILACHE H, et al. Spectroscopic observation of the rotational Doppler effect[J]. Physical Review Letters, 2006, 97(11): 113601. doi: 10.1103/physrevlett.97.113601
    LAVERY M P J, SPEIRITS F C, BARNETT S M, et al. Detection of a spinning object using light’s orbital angular momentum[J]. Science, 2013, 341(6145): 537–540. doi: 10.1126/science.1239936
    LIU Kang, LI Xiang, GAO Yue, et al. Microwave imaging of spinning object using orbital angular momentum[J]. Journal of Applied Physics, 2017, 122(12): 124903. doi: 10.1063/1.4991655
    GIBSON G M, TONINELLI E, HORSLEY S A R, et al. Reversal of orbital angular momentum arising from an extreme Doppler shift[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(15): 3800–3803. doi: 10.1073/pnas.1720776115
    LUO Ying, CHEN Yijun, ZHU Yongzhong, et al. Doppler effect and micro-Doppler effect of vortex-electromagnetic-wave-based radar[J]. IET Radar, Sonar & Navigation, 2020, 14(1): 2–9. doi: 10.1049/iet-rsn.2019.0124
    张群, 胡健, 罗迎, 等. 微动目标雷达特征提取、成像与识别研究进展[J]. 雷达学报, 2018, 7(5): 531–547. doi: 10.12000/JR18049

    ZHANG Qun, HU Jian, LUO Ying, et al. Research progresses in radar feature extraction, imaging, and recognition of target with micro-motions[J]. Journal of Radars, 2018, 7(5): 531–547. doi: 10.12000/JR18049
    陈小龙, 关键, 于晓涵, 等. 基于短时稀疏时频分布的雷达目标微动特征提取及检测方法[J]. 电子与信息学报, 2017, 39(5): 1017–1023. doi: 10.11999/JEIT161040

    CHEN Xiaolong, GUAN Jian, YU Xiaohan, et al. Radar micro-doppler signature extraction and detection via short-time sparse time-frequency distribution[J]. Journal of Electronics &Information Technology, 2017, 39(5): 1017–1023. doi: 10.11999/JEIT161040
    CHEN M L N, JIANG Lijun, and SHA W E I. Ultrathin complementary metasurface for orbital angular momentum generation at microwave frequencies[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(1): 396–400. doi: 10.1109/TAP.2016.2626722
    LUK S M H, KWONG N H, LEWANDOWSKI P, et al. Optically controlled orbital angular momentum generation in a polaritonic quantum fluid[J]. Physical Review Letters, 2017, 119(11): 113903. doi: 10.1103/PhysRevLett.119.113903
    ZHOU Yan, GAO Hui, TENG Jinghua, et al. Orbital angular momentum generation via a spiral phase microsphere[J]. Optics Letters, 2018, 43(1): 34–37. doi: 10.1364/OL.43.000034
    郭忠义, 汪彦哲, 郑群, 等. 涡旋电磁波天线技术研究进展[J]. 雷达学报, 2019, 8(5): 631–655. doi: 10.12000/JR19091

    GUO Zhongyi, WANG Yanzhe, ZHENG Qun, et al. Advances of research on antenna technology of vortex electromagnetic waves[J]. Journal of Radars, 2019, 8(5): 631–655. doi: 10.12000/JR19091
    LIU Kang, LI Xiang, GAO Yue, et al. High-resolution electromagnetic vortex imaging based on sparse Bayesian learning[J]. IEEE Sensors Journal, 2017, 17(21): 6918–6927. doi: 10.1109/JSEN.2017.2754554
    罗迎, 张群, 封同安, 等. OFD-LFM MIMO雷达中旋转目标微多普勒效应分析及三维微动特征提取[J]. 电子与信息学报, 2011, 33(1): 8–13. doi: 10.3724/SP.J.1146.2010.00234

    LUO Ying, ZHANG Qun, FENG Tongan, et al. Micro-Doppler effect analysis of rotating target and three-dimensional micro-motion feature extraction in OFD-LFM MIMO radar[J]. Journal of Electronics &Information Technology, 2011, 33(1): 8–13. doi: 10.3724/SP.J.1146.2010.00234
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  1358
  • HTML全文浏览量:  241
  • PDF下载量:  127
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-20
  • 修回日期:  2021-01-24
  • 网络出版日期:  2021-02-06
  • 刊出日期:  2021-03-22

目录

    /

    返回文章
    返回