高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

广播卫星电视接收机对SMAP卫星L波段微波辐射计的射频干扰特征分析

王新新 王祥 范剑超 王林 孟庆辉 魏恩泊

王新新, 王祥, 范剑超, 王林, 孟庆辉, 魏恩泊. 广播卫星电视接收机对SMAP卫星L波段微波辐射计的射频干扰特征分析[J]. 电子与信息学报, 2021, 43(8): 2292-2299. doi: 10.11999/JEIT200593
引用本文: 王新新, 王祥, 范剑超, 王林, 孟庆辉, 魏恩泊. 广播卫星电视接收机对SMAP卫星L波段微波辐射计的射频干扰特征分析[J]. 电子与信息学报, 2021, 43(8): 2292-2299. doi: 10.11999/JEIT200593
Xinxin WANG, Xiang WANG, Jianchao FAN, Lin WANG, Qinghui MENG, Enbo WEI. Analysis of RF Interference Characteristics of Broadcasting Satellite TV Receivers to SMAP Satellite L-Band Microwave Radiometer[J]. Journal of Electronics & Information Technology, 2021, 43(8): 2292-2299. doi: 10.11999/JEIT200593
Citation: Xinxin WANG, Xiang WANG, Jianchao FAN, Lin WANG, Qinghui MENG, Enbo WEI. Analysis of RF Interference Characteristics of Broadcasting Satellite TV Receivers to SMAP Satellite L-Band Microwave Radiometer[J]. Journal of Electronics & Information Technology, 2021, 43(8): 2292-2299. doi: 10.11999/JEIT200593

广播卫星电视接收机对SMAP卫星L波段微波辐射计的射频干扰特征分析

doi: 10.11999/JEIT200593
基金项目: 国家自然科学基金(41806212),国家重点研发计划(2016YFC1401000)
详细信息
    作者简介:

    王新新:男,1989年生,助理研究员,主要研究方向为海表面盐度卫星微波遥感、RFI检测及抑制

    王祥:男,1984年生,助理研究员,主要研究方向为海洋生态环境遥感及应用研究等工作

    范剑超:男,1985年生,副研究员,主要研究方向为海洋遥感目标信息智能提取

    王林:男,1981年生,副研究员,主要研究方向为海洋光学、水色及

    孟庆辉:女,1987年生,助理研究员,主要研究方向为海洋生态环境遥夜光遥感等

    魏恩泊:男,1965年生,研究员,主要研究方向为海洋遥感机理(白冠微波辐射、盐度微波遥感理论)和复合介质物性理论等

    通讯作者:

    魏恩泊 ebwei@qdio.ac.cn

  • 中图分类号: TP722.6

Analysis of RF Interference Characteristics of Broadcasting Satellite TV Receivers to SMAP Satellite L-Band Microwave Radiometer

Funds: The National Natural Science Foundation of China (41806212), The National Key R&D Program of China (2016YFC1401000)
  • 摘要: 该文通过融合SMAP卫星L波段交叉极化亮温,建立基于密度和强度空间分布特征的多重迭代聚类射频干扰(RFI)检测识别算法。分析并提取日本典型RFI源(广播卫星电视接收机)密度和累积强度的时空分布和变化特征。电视接收机作为典型的RFI源,主要分布在日本城市化水平和范围均相对较大的区域(条状或面状),局部区域内分布点圆状RFI(可能为微波辐射基站),导致局地化RFI累积强度具有很高的水平。同时,在日本其他区域也检测到独立分布的点圆状RFI,干扰强度和范围相对局限。2018年开始,日本RFI整体分布范围和强度能级呈下降趋势。典型RFI源特征分析对于我国建立RFI检测、识别及抑制模型具有重要意义。
  • 图  1  家用电视室外接收设备基本内部结构及IF辐射发射导致的RFI机制示意图

    图  2  2015年至2020年研究区域RFI累积强度空间分布图

    图  3  2015年至2020年研究区域RFI疑似样本累积标记空间分布图

    图  4  NPP-VIIRS夜光遥感卫星观测数据年均分布图

    图  5  2015年至2020年RFI月均尺度累计强度统计直方图

    图  6  2015年至2020年研究区域RFI月均尺度累计强度分布图

    表  1  日本Ku波段BBS新增频道号与指派频率的对应关系及RF转换IF后对应的IF中心频率及频率范围[20]

    BBS
    频道号
    指派频率(MHz)转换IF中心频率(MHz)转换IF频率范围(MHz)
    1712034.361356.361339.11~1373.61
    1912072.721394.721377.47~1411.97
    2112111.081433.081415.83~1450.33
    2312149.441471.441454.19~1488.69
    注:本振LO频率:10678 MHz;带宽BW:34.5 MHz
    下载: 导出CSV

    表  2  2015年4月至2020年6月RFI检测识别结果统计表

    年份2015年2016年2017年2018年2019年2020年合计
    有效数据天数(天)2743663653653321811883
    有效数据轨道数(个)6699009139058174574661
    平均每月数据个数(个)74757675747675
    检测为RFI疑似样本数(个)11129414486514784813497911435456745710085
    识别为符合RFI特征样本数(个)10207213379813580512310310409751759650634
    未识别为符合RFI特征样本数(个)922211067120431187610257498659451
    疑似样本识别率P(%)91.7192.3691.8591.2091.0391.2191.63
    下载: 导出CSV
  • [1] DINNAT E P, LE VINE D M, BOUTIN J, et al. Satellite sea surface salinity: Evaluation of products and impact of retrieval algorithms[C]. 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 7936–7939. doi: 10.1109/IGARSS.2019.8899065.
    [2] FORE A, YUEH S, TANG Wenqing, et al. The JPL SMAP sea surface salinity algorithm[C]. 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 7920–7923. doi: 10.1109/IGARSS.2019.8898359.
    [3] OLIVA R, DAGANZO E, KERR Y H, et al. SMOS radio frequency interference scenario: Status and actions taken to improve the RFI environment in the 1400–1427-MHz passive band[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(5): 1427–1439. doi: 10.1109/TGRS.2012.2182775
    [4] LE VINE D M, DE MATTHAEIS P, RUF C S, et al. Aquarius RFI detection and mitigation algorithm: Assessment and examples[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 4574–4584. doi: 10.1109/TGRS.2013.2282595
    [5] MISRA S, JOHNSON J, AKSOY M, et al. SMAP RFI mitigation algorithm performance characterization using airborne high-rate direct-sampled SMAPVEX 2012 data[C]. 2013 IEEE International Geoscience and Remote Sensing Symposium, Melbourne, Australia, 2013: 41–44. doi: 10.1109/IGARSS.2013.6721087.
    [6] MOHAMMED P N, AKSOY M, PIEPMEIER J R, et al. SMAP L-band microwave radiometer: RFI mitigation prelaunch analysis and first year on-orbit observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10): 6035–6047. doi: 10.1109/TGRS.2016.2580459
    [7] CAMPS A J, CORBELLA I, TORRES F, et al. RF interference analysis in aperture synthesis interferometric radiometers: Application to L-band MIRAS instrument[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(2): 942–950. doi: 10.1109/36.841976
    [8] CAMPS A, GOURRION J, TARONGI J M, et al. Radio-frequency interference detection and mitigation algorithms for synthetic aperture radiometers[J]. Algorithms, 2011, 4(3): 155–182. doi: 10.3390/a4030155
    [9] PARK J, JOHNSON J T, MAJUREC N, et al. Airborne L-Band radio frequency interference observations from the SMAPVEX08 campaign and associated flights[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(9): 3359–3370. doi: 10.1109/TGRS.2011.2107560
    [10] SOLDO Y, DE MATTHAEIS P, and LE VINE D M. L-band RFI in Japan[C].2016 Radio Frequency Interference (RFI), Socorro, USA, 2016: 111–114. doi: 10.1109/RFINT.2016.7833542.
    [11] LE VINE D M, JOHNSON J T, and PIEPMEIER J. RFI and remote sensing of the earth from space[C]. 2016 Radio Frequency Interference (RFI), Socorro, USA, 2016: 49–54. doi: 10.1109/RFINT.2016.7833530.
    [12] SOLDO Y, LE VINE D M, DE MATTHAEIS P, et al. L-Band RFI detected by SMOS and Aquarius[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7): 4220–4235. doi: 10.1109/TGRS.2017.2690406
    [13] MIRANDA J J, VALL-LLOSSERA M, CAMPS A, et al. Sea state effect on the sea surface emissivity at L-band[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(10): 2307–2315. doi: 10.1109/TGRS.2003.817190
    [14] KERR Y H, WALDTEUFEL P, WIGNERON J P, et al. Soil moisture retrieval from space: The Soil Moisture and Ocean Salinity (SMOS) mission[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(8): 1729–1735. doi: 10.1109/36.942551
    [15] MISRA S and RUF C S. Detection of radio-frequency interference for the Aquarius radiometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(10): 3123–3128. doi: 10.1109/TGRS.2008.920371
    [16] PIEPMEIER J R, JOHNSON J T, MOHAMMED P N, et al. Radio-frequency interference mitigation for the soil moisture active passive microwave radiometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1): 761–775. doi: 10.1109/TGRS.2013.2281266
    [17] 王新新, 王祥, 韩震, 等. 基于L波段Stokes参数遥感数据射频干扰检测及特性分析[J]. 电子与信息学报, 2015, 37(10): 2342–2348. doi: 10.11999/JEIT141577

    WANG Xinxin, WANG Xiang, HAN Zhen, et al. Radio frequency interference detection and characteristic analysis based on the L band Stokes parameters remote sensing data[J]. Journal of Electronics &Information Technology, 2015, 37(10): 2342–2348. doi: 10.11999/JEIT141577
    [18] PENG Jinzheng, MISRA S, CHAN S, et al. SMAP radiometer brightness temperature calibration for the L1B_TB, L1C_TB (Version 4), and L1C_TB_E (Version 2) data products[EB/OL]. https://nsidc.org/sites/nsidc.org/files/technical-references/SMAP_L1_Assessment%20Report%2020180601_v9.pdf.2020.2.
    [19] QUEROL J, PEREZ A, and CAMPS A. A review of RFI mitigation techniques in microwave radiometry[J]. Remote Sensing, 2019, 11(24): 3042. doi: 10.3390/rs11243042
    [20] DAGANZO E, OLIVA R, RICHAUME P, et al. SMOS RFI experience in the 1400–1427 MHz passive band: Case of extended interference caused by broadcasting satellite home-TV receivers[C]. 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 4455–4458. doi: 10.1109/IGARSS.2019.8897873.
    [21] AKSOY M. Radio frequency interference characterization and detection in L-band microwave radiometry[D]. [Ph. D. dissertation], The Ohio State University, 2015.
    [22] PIEPMEIER J R, FOCARDI P, HORGAN K A, et al. SMAP L-band microwave radiometer: Instrument design and first year on orbit[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(4): 1954–1966. doi: 10.1109/TGRS.2016.2631978
    [23] SOLDO Y, LE VINE D M, BRINGER A, et al. Recent advances in Smap RFI processing[C]. 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 2018: 313–315. doi: 10.1109/IGARSS.2018.8518891.
    [24] SOLDO Y, LE VINE D M, BRINGER A, et al. Location of radio-frequency interference sources using the SMAP L-band radiometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(11): 6854–6866. doi: 10.1109/TGRS.2018.2844127
    [25] 姜涛, 赵凯, 万祥坤. L波段微波辐射计周期脉冲式干扰时域检测方法研究[J]. 电子与信息学报, 2018, 40(7): 1539–1545. doi: 10.11999/JEIT170954

    JIANG Tao, ZHAO Kai, and WAN Xiangkun. Research on detection methods to periodic pulsed interference for L band microwave radiometer in time domain[J]. Journal of Electronics &Information Technology, 2018, 40(7): 1539–1545. doi: 10.11999/JEIT170954
    [26] KRISTENSEN S S, BALLING J E, SKOU N, et al. RFI detection in SMOS data using 3rd and 4th Stokes parameters[C]. The 12th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad), Rome, Italy, 2012: 1–4. doi: 10.1109/MicroRad.2012.6185254.
    [27] WANG Xinxin, WANG Xiang, FAN Jianchao, et al. Automatic detection and identification of RFI sources for SMAP satellite polarized data based on IDL[C]. The 10th International Conference on Intelligent Control and Information Processing (ICICIP), Marrakesh, Morocco, 2019: 76–80. doi: 10.1109/ICICIP47338.2019.9012190.
    [28] 马廷. 夜光遥感大数据视角下的中国城市化时空特征[J]. 地球信息科学学报, 2019, 21(1): 59–67. doi: 10.12082/dqxxkx.2019.180361

    MA Ting. Spatiotemporal characteristics of urbanization in china from the perspective of remotely sensed big data of nighttime light[J]. Journal of Geo-Information Science, 2019, 21(1): 59–67. doi: 10.12082/dqxxkx.2019.180361
    [29] JIN Rong, LI Qingxia, and LIU Hang. A subspace algorithm to mitigate energy unknown RFI for synthetic aperture interferometric radiometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(1): 227–237. doi: 10.1109/TGRS.2019.2936005
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  870
  • HTML全文浏览量:  272
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-20
  • 修回日期:  2021-03-23
  • 网络出版日期:  2021-04-08
  • 刊出日期:  2021-08-10

目录

    /

    返回文章
    返回