高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于遗传算法的智能粒子滤波重采样策略研究

刘海涛 林艳明 陈永华 周尔民 彭博

刘海涛, 林艳明, 陈永华, 周尔民, 彭博. 基于遗传算法的智能粒子滤波重采样策略研究[J]. 电子与信息学报, 2021, 43(12): 3459-3466. doi: 10.11999/JEIT200561
引用本文: 刘海涛, 林艳明, 陈永华, 周尔民, 彭博. 基于遗传算法的智能粒子滤波重采样策略研究[J]. 电子与信息学报, 2021, 43(12): 3459-3466. doi: 10.11999/JEIT200561
Haitao LIU, Yanming LIN, Yonghua CHEN, Ermin ZHOU, Bo PENG. A Study on Resampling Strategy of Intelligent Particle Filter Based on Genetic Algorithm[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3459-3466. doi: 10.11999/JEIT200561
Citation: Haitao LIU, Yanming LIN, Yonghua CHEN, Ermin ZHOU, Bo PENG. A Study on Resampling Strategy of Intelligent Particle Filter Based on Genetic Algorithm[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3459-3466. doi: 10.11999/JEIT200561

基于遗传算法的智能粒子滤波重采样策略研究

doi: 10.11999/JEIT200561
基金项目: 国家自然科学基金(51765017),江西省自然科学基金(20202BABL204043),江西省重点研发计划(20202BBEL53007)
详细信息
    作者简介:

    刘海涛:男,1986年生,副教授,博士,研究方向为振动噪声控制技术、气动噪声分析、噪声源识别、现代检测技术及其应用

    林艳明:男,1995年生,硕士生,研究方向为声源追踪

    陈永华:男,1994年生,硕士生,研究方向为声信号处理

    周尔民:男,1962年生,教授,主要研究方向为智能检测技术及先进制造技术

    彭博:男,1989年生,高级工程师,主要研究方向为智能信号处理技术

    通讯作者:

    周尔民 zhouermin@sina.com

  • 中图分类号: TN713; TN911.7

A Study on Resampling Strategy of Intelligent Particle Filter Based on Genetic Algorithm

Funds: The National Natural Science Foundation of China (51765017), The Natural Science Foundation of Jiangxi Province (20202BABL204043), The Key Research and Development Projects of Jiangxi Province (20202BBEL53007)
  • 摘要: 智能粒子滤波通过借鉴遗传算法思想能够减轻粒子退化现象。在基于遗传算法的智能粒子滤波基础上,该文提出对低权值粒子的改进的智能粒子滤波(IIPF)处理策略。在对粒子进行分离、交叉后,优化遗传算子,对低权值粒子进行自适应处理。低权值粒子根据权值大小自行判断是否为底层粒子;底层粒子将直接进行变异,其余低权值粒子将根据变异概率随机变异。仿真结果表明,改进的智能粒子滤波(IIPF)性能优于智能粒子滤波、一般粒子滤波算法和拓展卡尔曼滤波。在1维仿真实验中,改进的智能粒子滤波误差较一般粒子滤波算法和智能粒子滤波分别降低了10.5%和8.5%,且具有更好的收敛性;在多维仿真实验中,改进的智能粒子滤波较智能粒子滤波在高度均方根误差和平均误差上分别降低了8.5%和7.5%,在速度均方根误差和平均误差上分别降低了11.5%和7.6%;在乘性噪声和非高斯随机噪声中,改进的智能粒子滤波依旧有10%以上的性能优势。
  • 图  1  智能粒子滤波和改进智能粒子滤波的遗传重采样示意图

    图  2  1维仿真模型的状态及平均误差

    图  3  $k = 63$时粒子分布图

    图  4  不同粒子数下各算法均方根误差

    图  5  速度状态估计图

    图  6  $k = 11,N = 500$时粒子分布图

    表  1  改进的智能粒子滤波算法

     (1) 获取$N$个初始粒子${\boldsymbol{x}}_0^i$,其中$i = 1,2, \cdots ,N$。
     (2) For $k = 1,2, \cdots$。
       (a) 抽取粒子样本${\boldsymbol{x}}_k^i$,计算权值$w_k^i$;
       (b) 将粒子按权值大小分为${\boldsymbol{x}}_{k{\rm{L}}}^l$和${\boldsymbol{x}}_{k{\rm{H}}}^j$;
       (c) 根据式(11)、式(12)及式(13)得到变异后的新粒子${\boldsymbol{x}}_{k{\rm{E}}}^l$;
       (d) 更新${\boldsymbol{x}}_{k{\rm{E}}}^l$和${\boldsymbol{x}}_{k{\rm{H}}}^j$权值;
       (e) 根据权值进行重采样过程。
       end
    下载: 导出CSV

    表  2  1维模型仿真结果

    PFRPFIPF本文IIPF
    平均耗时(s)0.0223.8840.0410.044
    均方根误差5.0614.6705.1244.688
    平均误差2.8052.7052.7572.549
    平均有效粒子数22.96521.30126.14526.476
    下载: 导出CSV

    表  3  多维模型均方根误差与平均误差表

    PFKPFIPF本文IIPF
    均方根误差高度(m)92496.7336.7289.0255.8
    速度(m/s)8762.88872.8919.8857.3
    平均误差高度(m)125065.4548.8320.9296.4
    速度(m/s)14013.814205.11099.11051.1
    下载: 导出CSV

    表  4  非高斯随机噪声和乘性噪声下多维仿真模型的均方根误差

    IPFIIPF提升率(%)
    非高斯随机噪声高度(m)232.6207.310.9
    速度(m/s)856.5799.16.7
    乘性噪声高度(m)223.3200.310.3
    速度(m/s)845.6790.56.5
    下载: 导出CSV
  • [1] ARULAMPALAM M S, MASKELL S, GORDON N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J]. IEEE Transactions on Signal Processing, 2002, 50(2): 174–188. doi: 10.1109/78.978374
    [2] KLEE U, GEHRIG T, and MCDONOUGH J. Kalman filters for time delay of arrival-based source localization[J]. EURASIP Journal on Advances in Signal Processing, 2006, 2006: 012378. doi: 10.1155/ASP/2006/12378
    [3] 鞠纯纯, 何波, 刘保龙, 等. 基于粒子滤波器的SLAM的仿真研究[J]. 系统仿真学报, 2007, 19(16): 3715–3718, 3723. doi: 10.1360/jos182740

    JU Chunchun, HE Bo, LIU Baolong, et al. Simulation research on simultaneous robot localization and mapping based on particle filter[J]. Journal of System Simulation, 2007, 19(16): 3715–3718, 3723. doi: 10.1360/jos182740
    [4] 程兰, 王志远, 陈杰, 等. 基于粒子滤波和滑动平均扩展Kalman滤波的多径估计算法[J]. 电子与信息学报, 2017, 39(3): 709–716. doi: 10.11999/JEIT160587

    CHENG Lan, WANG Zhiyuan, CHEN Jie, et al. An improved multipath estimation algorithm using particle filter and sliding average extended Kalman filter[J]. Journal of Electronics &Information Technology, 2017, 39(3): 709–716. doi: 10.11999/JEIT160587
    [5] ZHANG Ke, ZHU Shibing, and LI Changqing. Blind separation of PCMA signals based on improved particle filter algorithm[J]. Journal of Physics: Conference Series, 2019, 1176(6): 062004. doi: 10.1088/1742-6596/1176/6/062004
    [6] 张颖, 高灵君. 基于格拉布斯准则和改进粒子滤波算法的水下传感网目标跟踪[J]. 电子与信息学报, 2019, 41(10): 2294–2301. doi: 10.11999/JEIT190079

    ZHANG Ying and GAO Lingjun. Target tracking with underwater sensor networks based on Grubbs criterion and improved particle filter algorithm[J]. Journal of Electronics &Information Technology, 2019, 41(10): 2294–2301. doi: 10.11999/JEIT190079
    [7] WANG Fasheng, LIN Baowei, ZHANG Junxing, et al. Object tracking using Langevin Monte Carlo particle filter and locality sensitive histogram based likelihood model[J]. Computers & Graphics, 2018, 70: 214–223. doi: 10.1016/j.cag.2017.07.023
    [8] GUSTAFSSON F. Particle filter theory and practice with positioning applications[J]. IEEE Aerospace and Electronic Systems Magazine, 2010, 25(7): 53–82. doi: 10.1109/MAES.2010.5546308
    [9] 张洪涛, 马培军, 崔平远. 一种用于解决粒子滤波粒子退化现象的重要性重采样算法的研究[J]. 飞行器测控学报, 2008, 27(4): 44–48.

    ZHANG Hongtao, MA Peijun, and CUI Pingyuan. Research on an importance resampling algorithm to solve particle degeneration of particle filter[J]. Journal of Spacecraft TT &C Technology, 2008, 27(4): 44–48.
    [10] MURRAY L M, LEE A, and JACOB P E. Parallel resampling in the particle filter[J]. Journal of Computational and Graphical Statistics, 2016, 25(3): 789–805. doi: 10.1080/10618600.2015.1062015
    [11] BOLIC M, DJURIC P M, and HONG S. New resampling algorithms for particle filters[C]. 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, Hong Kong, China, 2003: II-589.
    [12] 冯驰, 赵娜, 王萌. 一种改进残差重采样算法的研究[J]. 哈尔滨工程大学学报, 2010, 31(1): 120–124. doi: 10.3969/j.issn.1006-7043.2010.01.021

    FENG Chi, ZHAO Na, and WANG Meng. Improving the residual resampling algorithm[J]. Journal of Harbin Engineering University, 2010, 31(1): 120–124. doi: 10.3969/j.issn.1006-7043.2010.01.021
    [13] LI Tiancheng, BOLIC M, and DJURIC P M. Resampling methods for particle filtering: Classification, implementation, and strategies[J]. IEEE Signal Processing Magazine, 2015, 32(3): 70–86. doi: 10.1109/MSP.2014.2330626
    [14] 叶龙, 王京玲, 张勤. 遗传重采样粒子滤波器[J]. 自动化学报, 2007, 33(8): 885–887. doi: 10.1360/aas-007-0885

    YE Long, WANG Jingling, and ZHANG Qin. Genetic resampling particle filter[J]. Acta Automatica Sinica, 2007, 33(8): 885–887. doi: 10.1360/aas-007-0885
    [15] BI Jun, GUAN Wei, and QI Longtao. A genetic resampling particle filter for freeway traffic-state estimation[J]. Chinese Physics B, 2012, 21(6): 068901. doi: 10.1088/1674-1056/21/6/068901
    [16] BI Jun, ZHANG Ting, YU Haiyang, et al. State-of-health estimation of lithium-ion battery packs in electric vehicles based on genetic resampling particle filter[J]. Applied Energy, 2016, 182: 558–568. doi: 10.1016/j.apenergy.2016.08.138
    [17] KHONG W L, KOW W Y, CHIN Y K, et al. Enhancement of particle filter resampling in vehicle tracking via genetic algorithm[C]. The 2012 6th UKSim/AMSS European Symposium on Computer Modeling and Simulation, Valetta, Malta, 2012: 243–248. doi: 10.1109/EMS.2012.72.
    [18] 张民, 贾海涛, 沈震. 基于遗传算法改进的粒子滤波重采样模型(英文)[J]. 电子科技大学学报, 2015, 44(3): 344–349. doi: 10.3969/j.issn.1001-0548.2015.03.005

    ZHANG Min, JIA Haitao, and SHEN Zhen. Improved resampling procedure based on genetic algorithm in particle filter[J]. Journal of University of Electronic Science and Technology of China, 2015, 44(3): 344–349. doi: 10.3969/j.issn.1001-0548.2015.03.005
    [19] YIN Shen and ZHU Xiangping. Intelligent particle filter and its application to fault detection of nonlinear system[J]. IEEE Transactions on Industrial Electronics, 2015, 62(6): 3852–3861. doi: 10.1109/TIE.2015.2399396
    [20] SIMON D. Optimal state estimation[J]. Ceylon Medical Journal, 2006, 5(3): 451–452. doi: 10.1002/0470045345
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  1148
  • HTML全文浏览量:  700
  • PDF下载量:  145
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-08
  • 修回日期:  2020-12-09
  • 网络出版日期:  2020-12-31
  • 刊出日期:  2021-12-21

目录

    /

    返回文章
    返回