高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种新型单层递归神经网络解决非光滑伪凸优化问题

喻昕 卢惠霞 伍灵贞 徐柳明

喻昕, 卢惠霞, 伍灵贞, 徐柳明. 一种新型单层递归神经网络解决非光滑伪凸优化问题[J]. 电子与信息学报, 2021, 43(8): 2421-2429. doi: 10.11999/JEIT200558
引用本文: 喻昕, 卢惠霞, 伍灵贞, 徐柳明. 一种新型单层递归神经网络解决非光滑伪凸优化问题[J]. 电子与信息学报, 2021, 43(8): 2421-2429. doi: 10.11999/JEIT200558
Xin YU, Huixia LU, Lingzhen WU, Liuming XU. A New One-layer Recurrent Neural Network for Solving Nonsmooth Pseudoconvex Optimization Problems[J]. Journal of Electronics & Information Technology, 2021, 43(8): 2421-2429. doi: 10.11999/JEIT200558
Citation: Xin YU, Huixia LU, Lingzhen WU, Liuming XU. A New One-layer Recurrent Neural Network for Solving Nonsmooth Pseudoconvex Optimization Problems[J]. Journal of Electronics & Information Technology, 2021, 43(8): 2421-2429. doi: 10.11999/JEIT200558

一种新型单层递归神经网络解决非光滑伪凸优化问题

doi: 10.11999/JEIT200558
基金项目: 国家自然科学基金(61862004, 61462006)
详细信息
    作者简介:

    喻昕:男,1973年生,教授,博士,研究方向为人工神经网络、互联网络、优化计算

    卢惠霞:女,1993年生,硕士生,研究方向为神经网络、优化计算

    伍灵贞:女,1995年生,硕士,研究方向为神经网络、优化计算

    徐柳明:男,1994年生,硕士生,研究方向为神经网络、优化计算

    通讯作者:

    伍灵贞 327467000@qq.com

  • 中图分类号: TP183

A New One-layer Recurrent Neural Network for Solving Nonsmooth Pseudoconvex Optimization Problems

Funds: The National Natural Science Foundation of China (61862004, 61462006)
  • 摘要: 非光滑伪凸优化问题是一类比较特殊的非凸优化问题,常出现在各类科学与工程应用中,因此具有很大的研究价值。针对现有神经网络模型解决非光滑伪凸优化问题存在的不足,该文基于微分包含理论,提出一种新型单层递归神经网络模型。通过理论分析,证明了神经网络状态解在有限时间内收敛到可行域,且永驻其中,最终神经网络状态解收敛于原优化问题的最优解。最后,通过数值实验,验证了所提理论的有效性。与现有的神经网络相比,该文所提神经网络模型结构简单仅为单层,不需要提前计算罚参数,且对初始点选取没有任何特殊的要求。
  • 图  1  神经网络式(4)的电路实现图

    图  2  实验1中10个随机初始点的收敛轨迹

    图  3  实验1中10个随机初始点的目标函数值

    图  4  实验2中10个随机初始点的收敛轨迹

    图  5  文献[10]中初始点为${(2,3,1,0)^{\rm{T}}}$的收敛轨迹

    图  6  实验2中初始点为${(2,3,1,0)^{\rm{T}}}$的收敛轨迹

    表  1  与现有神经网络对比

    参考文献层次结构神经元个数有无精确罚因子初始点是否为任意点
    文献[3]1n
    文献[5]2n+m
    文献[6]1n
    文献[10]1n
    文献[17]3n+m+p
    文献[18]1n
    文献[19]1n
    本文1n
    下载: 导出CSV
  • [1] TANK D W and HOPFIELD J. Simple ‘neural’ optimization networks: An A/D converter, signal decision circuit, and a linear programming circuit[J]. IEEE Transactions on Circuits and Systems, 1986, 33(5): 533–541. doi: 10.1109/TCS.1986.1085953
    [2] KENNEDY M P and CHUA L O. Neural networks for nonlinear programming[J]. IEEE Transactions on Circuits and Systems, 1988, 35(5): 554–562. doi: 10.1109/31.1783
    [3] XUE Xiaoping and BIAN Wei. Subgradient-based neural networks for nonsmooth convex optimization problems[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2008, 55(8): 2378–2391. doi: 10.1109/TCSI.2008.920131
    [4] QIN Sitian, FAN Dejun, WU Guangxi, et al. Neural network for constrained nonsmooth optimization using Tikhonov regularization[J]. Neural Networks, 2015, 63: 272–281. doi: 10.1016/j.neunet.2014.12.007
    [5] QIN Sitian and XUE Xiaoping. A two-layer recurrent neural network for nonsmooth convex optimization problems[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(6): 1149–1160. doi: 10.1109/TNNLS.2014.2334364
    [6] LI Qingfa, LIU Yaqiu, and ZHU Liangkuan. Neural network for nonsmooth pseudoconvex optimization with general constraints[J]. Neurocomputing, 2014, 131: 336–347. doi: 10.1016/j.neucom.2013.10.008
    [7] LIU Qingshan, GUO Zhishan, and WANG Jun. A one-layer recurrent neural network for constrained pseudoconvex optimization and its application for dynamic portfolio optimization[J]. Neural Networks, 2012, 26: 99–109. doi: 10.1016/j.neunet.2011.09.001
    [8] HOSSEINI A. A non-penalty recurrent neural network for solving a class of constrained optimization problems[J]. Neural Networks, 2016, 73: 10–25. doi: 10.1016/j.neunet.2015.09.013
    [9] QIN Sitian, YANG Xiudong, XUE Xiaoping, et al. A one-layer recurrent neural network for pseudoconvex optimization problems with equality and inequality constraints[J]. IEEE Transactions on Cybernetics, 2017, 47(10): 3063–3074. doi: 10.1109/TCYB.2016.2567449
    [10] BIAN Wei, MA Litao, QIN Sitian, et al. Neural network for nonsmooth pseudoconvex optimization with general convex constraints[J]. Neural Networks, 2018, 101: 1–14. doi: 10.1016/j.neunet.2018.01.008
    [11] 高鑫, 李慧, 张义, 等. 基于可变形卷积神经网络的遥感影像密集区域车辆检测方法[J]. 电子与信息学报, 2018, 40(12): 2812–2819. doi: 10.11999/JEIT180209

    GAO Xin, LI Hui, ZHANG Yi, et al. Vehicle detection in remote sensing images of dense areas based on deformable convolution neural network[J]. Journal of Electronics &Information Technology, 2018, 40(12): 2812–2819. doi: 10.11999/JEIT180209
    [12] LIU Na and QIN Sitian. A neurodynamic approach to nonlinear optimization problems with affine equality and convex inequality constraints[J]. Neural Networks, 2019, 109: 147–158. doi: 10.1016/j.neunet.2018.10.010
    [13] YU Xin, WU Lingzhen, XU Chenhua, et al. A novel neural network for solving nonsmooth nonconvex optimization problems[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(5): 1475–1488. doi: 10.1109/TNNLS.2019.2920408
    [14] LI Wenjing, BIAN Wei, and XUE Xiaoping. Projected neural network for a class of Non-Lipschitz optimization problems with linear constraints[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(9): 3361–3373. doi: 10.1109/TNNLS.2019.2944388
    [15] XU Chen, CHAI Yiyuan, QIN Sitian, et al. A neurodynamic approach to nonsmooth constrained pseudoconvex optimization problem[J]. Neural Networks, 2020, 124: 180–192. doi: 10.1016/j.neunet.2019.12.015
    [16] 喻昕, 许治健, 陈昭蓉, 等. 拉格朗日神经网络解决带等式和不等式约束的非光滑非凸优化问题[J]. 电子与信息学报, 2017, 39(8): 1950–1955. doi: 10.11999/JEIT161049

    YU Xin, XU Zhijian, CHEN Zhaorong, et al. Lagrange neural network for nonsmooth nonconvex optimization problems with equality and inequality constrains[J]. Journal of Electronics &Information Technology, 2017, 39(8): 1950–1955. doi: 10.11999/JEIT161049
    [17] CHENG Long, HOU Zengguang, LIN Yingzi, et al. Recurrent neural network for non-smooth convex optimization problems with application to the identification of genetic regulatory networks[J]. IEEE Transactions on Neural Networks, 2011, 22(5): 714–726. doi: 10.1109/TNN.2011.2109735
    [18] BIAN Wei and XUE Xiaoping. Subgradient-based neural networks for nonsmooth nonconvex optimization problems[J]. IEEE Transactions on Neural Networks, 2009, 20(6): 1024–1038. doi: 10.1109/TNN.2009.2016340
    [19] LIU Qingshan and WANG Jun. A one-layer recurrent neural network for constrained nonsmooth optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) , 2011, 41(5): 1323–1333. doi: 10.1109/TSMCB.2011.2140395
    [20] QIN Sitian, FAN Dejun, SU Peng, et al. A simplified recurrent neural network for pseudoconvex optimization subject to linear equality constraints[J]. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(4): 789–798. doi: 10.1016/j.cnsns.2013.08.034
    [21] QIN Sitian, BIAN Wei, and XUE Xiaoping. A new one-layer recurrent neural network for nonsmooth pseudoconvex optimization[J]. Neurocomputing, 2013, 120: 655–662. doi: 10.1016/j.neucom.2013.01.025
    [22] AUBIN J P and CELLINA A. Differential Inclusions[M]. Berlin, Germany: Springer-Verlag, 1984: 77.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  1260
  • HTML全文浏览量:  619
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-07
  • 修回日期:  2020-12-06
  • 网络出版日期:  2020-12-16
  • 刊出日期:  2021-08-10

目录

    /

    返回文章
    返回