高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于三维卷积的帕金森患者拖步识别

陈晓禾 曹旭刚 陈健生 胡春华 马羽

陈晓禾, 曹旭刚, 陈健生, 胡春华, 马羽. 基于三维卷积的帕金森患者拖步识别[J]. 电子与信息学报, 2021, 43(12): 3467-3475. doi: 10.11999/JEIT200543
引用本文: 陈晓禾, 曹旭刚, 陈健生, 胡春华, 马羽. 基于三维卷积的帕金森患者拖步识别[J]. 电子与信息学报, 2021, 43(12): 3467-3475. doi: 10.11999/JEIT200543
Xiaohe CHEN, Xugang CAO, Jiansheng CHEN, Chunhua HU, Yu MA. Shuffling Step Recognition Using 3D Convolution for Parkinsonian Patients[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3467-3475. doi: 10.11999/JEIT200543
Citation: Xiaohe CHEN, Xugang CAO, Jiansheng CHEN, Chunhua HU, Yu MA. Shuffling Step Recognition Using 3D Convolution for Parkinsonian Patients[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3467-3475. doi: 10.11999/JEIT200543

基于三维卷积的帕金森患者拖步识别

doi: 10.11999/JEIT200543
基金项目: 国家自然科学基金(61673234)
详细信息
    作者简介:

    陈晓禾:男,1976年生,研究员,研究方向为信号处理、人工智能

    曹旭刚:男,1995年生,硕士生,研究方向为深度学习与图像处理

    陈健生:男,1977年生,副教授,研究方向为计算机视觉与机器学习

    胡春华:男,1976年生,副研究员,研究方向为有源植入医疗器械

    马羽:女,1977年生,主任医师,教授,研究方向为功能神经外科

    通讯作者:

    陈健生 jschenthu@mail.tsinghua.edu.cn

  • 中图分类号: TN911.73; TP181

Shuffling Step Recognition Using 3D Convolution for Parkinsonian Patients

Funds: The National Natural Science Foundation of China (61673234)
  • 摘要: 冻结步态(FoG)是一种在帕金森病(PD)中常见的异常步态,而拖步则是冻结步态的一种表现形式,也是医生用来判断患者的治疗状况的重要因素,并且拖步状态也对PD患者的日常生活有很大影响。该文提出一种通过计算机视觉来实现患者拖步状态自动识别的方法,该方法通过以3维卷积为基础的网络结构,可以从PD患者的TUG测试视频中自动识别出患者是否具有拖步症状。其思路是首先利用特征提取模块从经过预处理的视频序列中提取出时空特征,然后将得到的特征在不同空间和时间尺度上进行融合,之后将这些特征送入分类网络中得到相应的识别结果。在该工作中共收集364个正常步态样本和362个具有拖步状态的样本来构成实验数据集,在该数据集上的实验表明,该方法的平均准确率能够达到91.3%。并且其能从临床常用的TUG测试视频中自动准确地识别出患者的拖步状态,这也为远程监测帕金森病患者的治疗状态提供了助力。
  • 图  1  TUG测试6个子任务

    图  2  整体流程方案

    图  3  C3D单元结构

    图  4  识别网络结构

    图  5  HPP网络结构

    图  6  PHPP网络结构

    图  7  不同的输入图像格式

    表  1  PD患者信息统计

    平均值范围
    年龄56.79±9.48[37,73]
    体重(kg)63.8±10.37[49,90]
    身高(cm)164.8±6.12[156,178]
    下载: 导出CSV

    表  2  不同网络比较结果(%)

    网络组合准确率精确率召回率
    本文91.389.792.0
    C3D[18]85.087.982.7
    D3D[19]87.589.485.1
    P3D[20]84.186.382.0
    GaitSet[21]84.987.185.2
    JGR-GCNN[13]79.187.576.5
    下载: 导出CSV

    表  3  不同组成的网络结构试验

    准确率(%)精确率(%)召回率(%)参数量(M)FLOPs (M)时间(ms)
    无UP和PHPP结构88.189.088.21.52.93.7
    无PHPP结构89.788.293.61.63.25.1
    完整结构91.389.792.01.93.87.5
    下载: 导出CSV

    表  4  多种图像输入格式实验结果比较(%)

    输入数据形式准确率精确率召回率
    a 84.8 84.6 90.2
    b 81.1 83.9 80.4.
    c 82.9 83.7 87.4
    d 84.9 85.0 90.1
    e 83.9 83.5 87.3
    f 90.8 92.1 90.8
    下载: 导出CSV
  • [1] GBD 2016 Parkinson’s Disease Collaborators. Global, regional, and national burden of Parkinson’s disease, 1990–2016: A systematic analysis for the global burden of disease study 2016[J]. The Lancet Neurology, 2018, 17(11): 939–953. doi: 10.1016/S1474-4422(18)30295-3
    [2] BLOEM B R, HAUSDORFF J M, VISSER J E, et al. Falls and freezing of gait in Parkinson’s disease: A review of two interconnected, episodic phenomena[J]. Movement Disorders, 2004, 19(8): 871–884. doi: 10.1002/mds.20115
    [3] DE LAU L M L and BRETELER M M B. Epidemiology of Parkinson’s disease[J]. The Lancet Neurology, 2006, 5(6): 525–535. doi: 10.1016/S1474-4422(06)70471-9
    [4] SVEINBJORNSDOTTIR S. The clinical symptoms of Parkinson’s disease[J]. Journal of Neurochemistry, 2016, 139(S1): 318–324. doi: 10.1111/jnc.13691
    [5] FERRAYE M U, DEBÛ B, and POLLAK P. Deep brain stimulation effect on freezing of gait[J]. Movement Disorders, 2008, 23(S2): S489–S494. doi: 10.1002/mds.21975
    [6] GILADI N and HERMAN T. How do i examine Parkinsonian gait?[J]. Movement Disorders Clinical Practice, 2016, 3(4): 427. doi: 10.1002/mdc3.12347
    [7] SCHAAFSMA J D, BALASH Y, GUREVICH T, et al. Characterization of freezing of gait subtypes and the response of each to levodopa in Parkinson’s disease[J]. European Journal of Neurology, 2003, 10(4): 391–398. doi: 10.1046/j.1468-1331.2003.00611.x
    [8] CAMPS J, SAMÀ A, MARTÍN M, et al. Deep learning for detecting freezing of gait episodes in Parkinson’s disease based on accelerometers[C]. The 14th International Work-Conference on Artificial Neural Networks, Cadiz, Spain, 2017: 344–355. doi: 10.1007/978-3-319-59147-6_30.
    [9] MILETI I, GERMANOTTA M, ALCARO S, et al. Gait partitioning methods in Parkinson’s disease patients with motor fluctuations: A comparative analysis[C]. IEEE International Symposium on Medical Measurements and Applications, Rochester, USA, 2017: 402–407. doi: 10.1109/MeMeA.2017.7985910.
    [10] NGUYEN T N, HUYNH H H, and MEUNIER J. Skeleton-based abnormal gait detection[J]. Sensors, 2016, 16(11): 1792. doi: 10.3390/s16111792
    [11] 高发荣, 王佳佳, 席旭刚, 等. 基于粒子群优化-支持向量机方法的下肢肌电信号步态识别[J]. 电子与信息学报, 2015, 37(5): 1154–1159. doi: 10.11999/JEIT141083

    GAO Farong, WANG Jiajia, XI Xugang, et al. Gait recognition for lower extremity electromyographic signals based on PSO-SVM method[J]. Journal of Electronics &Information Technology, 2015, 37(5): 1154–1159. doi: 10.11999/JEIT141083
    [12] MORRIS T R, CHO C, DILDA V, et al. Clinical assessment of freezing of gait in Parkinson’s disease from computer-generated animation[J]. Gait & Posture, 2013, 38(2): 326–329. doi: 10.1016/j.gaitpost.2012.12.011
    [13] HU Kun, WANG Zhiyong, MEI Shaohui, et al. Vision-based freezing of gait detection with anatomic directed graph representation[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 24(4): 1215–1225. doi: 10.1109/JBHI.2019.2923209
    [14] TANG Yunqi, LI Zhuorong, TIAN Huawei, et al. Detecting toe-off events utilizing a vision-based method[J]. Entropy, 2019, 21(4): 329. doi: 10.3390/e21040329
    [15] WOLF T, BABAEE M, and RIGOLL G. Multi-view gait recognition using 3D convolutional neural networks[C]. IEEE International Conference on Image Processing, Phoenix, USA, 2016: 4165–4169. doi: 10.1109/ICIP.2016.7533144.
    [16] 刘天亮, 谯庆伟, 万俊伟, 等. 融合空间-时间双网络流和视觉注意的人体行为识别[J]. 电子与信息学报, 2018, 40(10): 2395–2401. doi: 10.11999/JEIT171116

    LIU Tianliang, QIAO Qingwei, WAN Junwei, et al. Human action recognition via spatio-temporal dual network flow and visual attention fusion[J]. Journal of Electronics &Information Technology, 2018, 40(10): 2395–2401. doi: 10.11999/JEIT171116
    [17] 吴培良, 杨霄, 毛秉毅, 等. 一种视角无关的时空关联深度视频行为识别方法[J]. 电子与信息学报, 2019, 41(4): 904–910. doi: 10.11999/JEIT180477

    WU Peiliang, YANG Xiao, MAO Bingyi, et al. A perspective-independent method for behavior recognition in depth video via temporal-spatial correlating[J]. Journal of Electronics &Information Technology, 2019, 41(4): 904–910. doi: 10.11999/JEIT180477
    [18] TRAN D, BOURDEV L, FERGUS R, et al. Learning spatiotemporal features with 3D convolutional networks[C]. IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 4489–4497. doi: 10.1109/ICCV.2015.510.
    [19] LIU Jiawei, ZHA Zhengjun, CHEN Xuejin, et al. Dense 3D-convolutional neural network for person re-identification in videos[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2019, 15(1S): 8. doi: 10.1145/3231741
    [20] QIU Zhaofan, YAO Ting, and MEI Tao. Learning spatio-temporal representation with pseudo-3D residual networks[C]. IEEE International Conference on Computer Vision, Venice, Italy, 2017: 5534–5542. doi: 10.1109/ICCV.2017.590.
    [21] CHAO Hanqing, HE Yiwei, ZHANG Junping, et al. Gaitset: Regarding gait as a set for cross-view gait recognition[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 8126–8133. doi: 10.1609/aaai.v33i01.33018126
    [22] PODSIADLO D and RICHARDSON S. The timed “up & go”: A test of basic functional mobility for frail elderly persons[J]. Journal of the American Geriatrics Society, 1991, 39(2): 142–148. doi: 10.1111/j.1532-5415.1991.tb01616.x
    [23] LI Tianpeng, CHEN Jiansheng, HU Chunhua, et al. Automatic timed up-and-go sub-task segmentation for Parkinson’s disease patients using video-based activity classification[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26(11): 2189–2199. doi: 10.1109/TNSRE.2018.2875738
    [24] HE Kaiming, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]. IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2980–2988. doi: 10.1109/ICCV.2017.322.
    [25] LI Tianpeng, WAN Weitao, HUANG Yiqing, et al. Improving human parsing by extracting global information using the non-local operation[C]. IEEE International Conference on Image Processing, Taipei, China, 2019: 2961–2965. doi: 10.1109/ICIP.2019.8804412.
    [26] FU Yang, WEI Yunchao, ZHOU Yuqian, et al. Horizontal pyramid matching for person re-identification[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 8295–8302. doi: 10.1609/aaai.v33i01.33018295
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  1098
  • HTML全文浏览量:  687
  • PDF下载量:  141
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-12
  • 修回日期:  2021-03-24
  • 网络出版日期:  2021-04-29
  • 刊出日期:  2021-12-21

目录

    /

    返回文章
    返回