高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

融合偏置的动态专家信任推荐算法

贾俊杰 张玉超 刘鹏涛 陈旺虎

贾俊杰, 张玉超, 刘鹏涛, 陈旺虎. 融合偏置的动态专家信任推荐算法[J]. 电子与信息学报, 2021, 43(8): 2370-2377. doi: 10.11999/JEIT200539
引用本文: 贾俊杰, 张玉超, 刘鹏涛, 陈旺虎. 融合偏置的动态专家信任推荐算法[J]. 电子与信息学报, 2021, 43(8): 2370-2377. doi: 10.11999/JEIT200539
Junjie JIA, Yuchao ZHANG, Pengtao LIU, Wanghu CHEN. Fusion Bias Dynamic Expert Trust Recommendation Algorithm[J]. Journal of Electronics & Information Technology, 2021, 43(8): 2370-2377. doi: 10.11999/JEIT200539
Citation: Junjie JIA, Yuchao ZHANG, Pengtao LIU, Wanghu CHEN. Fusion Bias Dynamic Expert Trust Recommendation Algorithm[J]. Journal of Electronics & Information Technology, 2021, 43(8): 2370-2377. doi: 10.11999/JEIT200539

融合偏置的动态专家信任推荐算法

doi: 10.11999/JEIT200539
基金项目: 国家自然科学基金(61967013),甘肃省高等学校创新能力提升项目(2019A-006),甘肃省科技计划项目(145RJDA325),甘肃省档案科技项目(2016-09)
详细信息
    作者简介:

    贾俊杰:男,1974年生,博士,副教授,硕士生导师,研究方向为数据挖掘与隐私保护

    张玉超:男,1994年生,硕士生,研究方向为推荐系统与数据挖掘

    刘鹏涛:男,1995年生,硕士生,研究方向为推荐系统与数据挖掘

    陈旺虎:男,1973年生,博士,教授,硕士生导师,研究方向为大数据与云计算

    通讯作者:

    张玉超 991651866@qq.com

  • 中图分类号: TN919; TP182

Fusion Bias Dynamic Expert Trust Recommendation Algorithm

Funds: The National Natural Science Foundation of China (61967013), The Higher Education Innovation Ability Enhancement Project of Gansu Province (2019A-006), The Science and Technology Project of Gansu Province (145RJDA325), The Archives Science and Technology Project of Gansu Province (2016-09)
  • 摘要: 针对协同过滤推荐算法中数据稀疏、冷启动与噪声用户对推荐质量的严重影响,该文将用户-项目评分数据与用户信任关系数据相结合;提出一种融合偏置的动态专家信任推荐算法(BDETA),首先根据用户信任关系数据进行社区划分,获取用户间显式信任值;其次从社区中用户-项目评分数据获取可信度、隐式信任值;通过结合用户间可信度、显式信任值、隐式信任值动态确定专家信任因子,根据用户的推荐能力为每个社区确定专家数据集;最后结合用户不同评分标准进行评分预测。在真实数据集FilmTrust的实验结果中,能够有效地解决协同过滤中冷启动与数据稀疏问题,可更好地满足用户的个性化推荐需求,并且在推荐系统常用评价指标MAE与RMSE中有着不错的表现。
  • 图  1  算法框架流程图

    图  2  可求解区域

    图  3  社区专家占比$\varphi $对推荐质量的影响

    图  4  不同算法不同训练集规模推荐质量变化

    表  1  数据集信息

    数据集用户数量项目数量评分数量信任声明评分范围步长
    FilmTrust15082071354971853[0.5,4.0]0.5
    下载: 导出CSV

    表  2  参数$\alpha $$\beta $对MAE的影响

    $\alpha \backslash \beta $00.10.20.30.40.50.60.70.80.91.0
    00.52190.53540.53120.52430.51640.51540.51620.51670.51690.51730.5178
    0.10.51830.53070.53540.52380.51510.51560.51630.51670.51700.51740
    0.20.54940.53900.52940.52690.51380.51520.51600.51650.516800
    0.30.55060.54630.52200.52130.52210.51500.51580.5164000
    0.40.54300.52840.46970.49690.52230.51640.51580000
    0.50.56110.52450.52200.43920.51000.486000000
    0.60.56440.55660.54820.45320.4640000000
    0.70.55100.54360.55740.53040000000
    0.80.58320.55800.543600000000
    0.90.58310.5831000000000
    1.00.61270000000000
    下载: 导出CSV
  • [1] ADOMAVICIUS G and TUZHILIN A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6): 734–749. doi: 10.1109/TKDE.2005.99
    [2] KOENIGSTEIN N and PAQUET U. Xbox movies recommendations: Variational Bayes matrix factorization with embedded feature selection[C]. Proceedings of the 7th ACM Conference on Recommender Systems, Hong Kong, China, 2013. doi: 10.1145/2507157.2507168.
    [3] KIM T H, PARK S I, and YANG S B. Improving prediction quality in collaborative filtering based on clustering[C]. Proceedings of 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, Sydney, Australia, 2008: 704–710. doi: 10.1109/WIIAT.2008.319.
    [4] KOOHI H and KIANI K. User based collaborative filtering using fuzzy C-means[J]. Measurement, 2016, 91: 134–139. doi: 10.1016/j.measurement.2016.05.058
    [5] 龚敏, 邓珍荣, 黄文明. 基于用户聚类与Slope One填充的协同推荐算法[J]. 计算机工程与应用, 2018, 54(22): 139–143. doi: 10.3778/j.issn.1002-8331.1707-0336

    GONG Min, DENG Zhenrong, and HUANG Wenming. Collaborative recommendation algorithm based on user clustering and Slope One filling[J]. Computer Engineering and Applications, 2018, 54(22): 139–143. doi: 10.3778/j.issn.1002-8331.1707-0336
    [6] MASSA P and AVESANI P. Trust-aware recommender systems[C]. Proceedings of the 2007 ACM conference on Recommender Systems, Minneapolis, USA, 2007: 17–24.
    [7] YUAN W, SHU L, CHAO H C, et al. ITARS: Trust-aware recommender system using implicit trust networks[J]. IET Communications, 2010, 4(14): 1709–1721. doi: 10.1049/iet-com.2009.0733
    [8] LIU Fengkun and LEE H J. Use of social network information to enhance collaborative filtering performance[J]. Expert Systems with Applications, 2010, 37(7): 4772–4778. doi: 10.1016/j.eswa.2009.12.061
    [9] 郭弘毅, 刘功申, 苏波, 等. 融合社区结构和兴趣聚类的协同过滤推荐算法[J]. 计算机研究与发展, 2016, 53(8): 1664–1672. doi: 10.7544/issn1000-1239.2016.20160175

    GUO Hongyi, LIU Gongshen, SU Bo, et al. Collaborative filtering recommendation algorithm combining community structure and interest clusters[J]. Journal of Computer Research and Development, 2016, 53(8): 1664–1672. doi: 10.7544/issn1000-1239.2016.20160175
    [10] 张凯涵, 梁吉业, 赵兴旺, 等. 一种基于社区专家信息的协同过滤推荐算法[J]. 计算机研究与发展, 2018, 55(5): 968–976. doi: 10.7544/issn1000-1239.2018.20170253

    ZHANG Kaihan, LINAG Jiye, ZHAO Xingwang, et al. A collaborative filtering recommendation algorithm based on information of community experts[J]. Journal of Computer Research and Development, 2018, 55(5): 968–976. doi: 10.7544/issn1000-1239.2018.20170253
    [11] GHAVIPOUR M and MEYBODI M R. An adaptive fuzzy recommender system based on learning automata[J]. Electronic Commerce Research and Applications, 2016, 20: 105–115. doi: 10.1016/j.elerap.2016.10.002
    [12] BEDI P and VASHISTH P. Empowering recommender systems using trust and argumentation[J]. Information Sciences, 2014, 279: 569–586. doi: 10.1016/j.ins.2014.04.012
    [13] AMATRIAIN X, LATHIA N, PUJOL J M, et al. The wisdom of the few: A collaborative filtering approach based on expert opinions from the web[C]. The 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval, Boston, USA, 2009: 532–539. doi: 10.1145/1571941.1572033.
    [14] BREESE J S, HECKERMAN D, and KADIE C. Empirical analysis of predictive algorithms for collaborative filtering[C]. The 14th Conference on Uncertainty in Artificial Intelligence, San Francisco, USA, 1998.
    [15] 贾彭慧, 刘鑫一, 孔亚斌, 等. 基于专家动态生成的协同过滤推荐算法[J]. 计算机技术与发展, 2020, 30(3): 19–23. doi: 10.3969/j.issn.1673-629X.2020.03.004

    JIA Penghui, LIU Xinyi, KONG Yabin, et al. A dynamically generated experts-based collaborative filtering recommendation algorithm[J]. Computer Technology and Development, 2020, 30(3): 19–23. doi: 10.3969/j.issn.1673-629X.2020.03.004
    [16] 高发展, 黄梦醒, 张婷婷. 综合用户特征及专家信任的协作过滤推荐算法[J]. 计算机科学, 2017, 44(2): 103–106. doi: 10.11896/j.issn.1002-137X.2017.02.014

    GAO Fazhan, HUANG Mengxing, and ZHANG Tingting. Collaborative filtering recommendation algorithm based on user characteristics and expert opinions[J]. Computer Science, 2017, 44(2): 103–106. doi: 10.11896/j.issn.1002-137X.2017.02.014
    [17] 赵明, 闫寒, 曹高峰, 等. 融合用户信任度和相似度的基于核心用户抽取的鲁棒性推荐算法[J]. 电子与信息学报, 2019, 41(1): 180–186. doi: 10.11999/JEIT180142

    ZHAO Ming, YAN Han, CAO Gaofeng, et al. Robust recommendation algorithm based on core user extraction with user trust and similarity[J]. Journal of Electronics &Information Technology, 2019, 41(1): 180–186. doi: 10.11999/JEIT180142
    [18] 王建芳, 刘冉东, 刘永利. 一种带偏置的专家信任推荐算法[J]. 小型微型计算机系统, 2018, 39(2): 287–291. doi: 10.3969/j.issn.1000-1220.2018.02.019

    WANG Jianfang, LIU Randong, and LIU Yongli. Expert trust recommendation algorithm with bias[J]. Journal of Chinese Computer Systems, 2018, 39(2): 287–291. doi: 10.3969/j.issn.1000-1220.2018.02.019
    [19] WALTMAN L and VAN ECK N J. A smart local moving algorithm for large-scale modularity-based community detection[J]. The European Physical Journal B, 2013, 86(11): 471. doi: 10.1140/epjb/e2013-40829-0
    [20] GUO Guibing, ZHANG Jie, and THALMANN D. Merging trust in collaborative filtering to alleviate data sparsity and cold start[J]. Knowledge-Based Systems, 2014, 57: 57–68. doi: 10.1016/j.knosys.2013.12.007
    [21] LATHIA N, HAILES S, and CAPRA L. Trust-based Collaborative Filtering[M]. KARABULUT Y, MITCHELL J, HERRMANN P, et al. Trust Management II. Boston: Springer, 2008: 119–134.
    [22] SHEUGH L and ALIZADEH S H. A novel 2D-Graph clustering method based on trust and similarity measures to enhance accuracy and coverage in recommender systems[J]. Information Sciences, 2018, 432: 210–230. doi: 10.1016/j.ins.2017.12.007
    [23] 刘国丽, 白晓霞, 廉孟杰, 等. 基于专家信任的协同过滤推荐算法改进研究[J]. 计算机工程与科学, 2019, 41(10): 1846–1853. doi: 10.3969/j.issn.1007-130X.2019.10.018

    LIU Guoli, BAI Xiaoxia, LIAN Mengjie, et al. An improved collaborative filtering recommendation algorithm based on expert trust[J]. Computer Engineering &Science, 2019, 41(10): 1846–1853. doi: 10.3969/j.issn.1007-130X.2019.10.018
    [24] NIKZAD–KHASMAKHI N, BALAFAR M A, and FEIZI-DERAKHSHI M R. The state-of-the-art in expert recommendation systems[J]. Engineering Applications of Artificial Intelligence, 2019, 82: 126–147. doi: 10.1016/j.engappai.2019.03.020
    [25] GOLDBERG D, NICHOLS D, OKI B M, et al. Using collaborative filtering to weave an information tapestry[J]. Communications of the ACM, 1992, 35(12): 61–70. doi: 10.1145/138859.138867
    [26] DESHPANDE M and KARYPIS G. Item-based top-N recommendation algorithms[J]. ACM Transactions on Information Systems, 2004, 22(1): 143–177. doi: 10.1145/963770.963776
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  676
  • HTML全文浏览量:  244
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-30
  • 修回日期:  2021-03-23
  • 网络出版日期:  2021-04-08
  • 刊出日期:  2021-08-10

目录

    /

    返回文章
    返回