高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进迭代扩展卡尔曼滤波的3星时频差测向融合动目标跟踪方法

曲志昱 王超然 孙萌

曲志昱, 王超然, 孙萌. 基于改进迭代扩展卡尔曼滤波的3星时频差测向融合动目标跟踪方法[J]. 电子与信息学报, 2021, 43(10): 2871-2877. doi: 10.11999/JEIT200526
引用本文: 曲志昱, 王超然, 孙萌. 基于改进迭代扩展卡尔曼滤波的3星时频差测向融合动目标跟踪方法[J]. 电子与信息学报, 2021, 43(10): 2871-2877. doi: 10.11999/JEIT200526
Zhiyu QU, Chaoran WANG, Meng SUN. Tracking Method of Moving Target for Three-satellite TDOA/FDOA/DOA System Based on Improved IEKF Algorithm[J]. Journal of Electronics & Information Technology, 2021, 43(10): 2871-2877. doi: 10.11999/JEIT200526
Citation: Zhiyu QU, Chaoran WANG, Meng SUN. Tracking Method of Moving Target for Three-satellite TDOA/FDOA/DOA System Based on Improved IEKF Algorithm[J]. Journal of Electronics & Information Technology, 2021, 43(10): 2871-2877. doi: 10.11999/JEIT200526

基于改进迭代扩展卡尔曼滤波的3星时频差测向融合动目标跟踪方法

doi: 10.11999/JEIT200526
基金项目: 国家自然科学基金(61801143),中央高校基本科研业务费专项资金(3072020CF0814)
详细信息
    作者简介:

    曲志昱:女,1983年生,副教授,研究方向为电子侦察与对抗、阵列信号测向

    王超然:男,1996年生,硕士生,研究方向为星载侦察定位

    孙萌:男,1997年生,硕士生,研究方向为阵列信号测向

    通讯作者:

    王超然 xhxhxhwcr@163.com

  • 中图分类号: TN953

Tracking Method of Moving Target for Three-satellite TDOA/FDOA/DOA System Based on Improved IEKF Algorithm

Funds: The National Natural Science Foundation of China (61801143), The Fundamental Research Funds for the Central Universities (3072020CF0814)
  • 摘要: 针对传统3星时频差定位系统在未知高程情况下,对运动辐射源会产生由目标速度引发的定位误差的问题,该文提出一种利用主星的干涉仪测向信息的改进迭代扩展卡尔曼滤波(IEKF),结合3星时差、频差信息的无源融合动目标跟踪新方法。首先,在坐标系转换的基础上建立了定位模型,并在此基础上利用改进的迭代扩展卡尔曼滤波算法对未知高程的运动目标进行跟踪。仿真结果表明,该方法无需获知目标的高程信息即可实现对运动辐射源的定位、跟踪和测速,且对目标的位置、速度估计性能有较大的提高。
  • 图  1  TDOA-FDOA-DOA跟踪定位系统示意图

    图  2  改进IEKF流程示意图

    图  3  3星同轨GDOP分布

    图  4  2星同轨1星异轨GDOP分布

    图  5  目标定位跟踪结果

    图  6  目标高程跟踪结果

    图  7  目标位置估计误差

    图  8  目标速度估计误差

  • [1] SU Ting and GAO Yong. TDOA estimation of dual-satellites interference localization based on blind separation[J]. Journal of Systems Engineering and Electronics, 2019, 30(4): 696–702. doi: 10.21629/JSEE.2019.04.07
    [2] 任凯强, 孙正波. 基于虚拟参考站的同步三星时差定位系统广域差分校正算法[J]. 电子与信息学报, 2019, 41(2): 433–439. doi: 10.11999/JEIT180289

    REN Kaiqiang and SUN Zhengbo. Wide area difference calibration algorithm based on virtual reference station for tri-satellite TDOA geolocation system[J]. Journal of Electronics &Information Technology, 2019, 41(2): 433–439. doi: 10.11999/JEIT180289
    [3] CHEN Xin, WANG Ding, YIN Jiexin, et al. Augmented Lagrange geolocation algorithm using TDOA measurements and calibration sources in the presence of satellite position errors[J]. AEU - International Journal of Electronics and Communications, 2019, 111: 152900. doi: 10.1016/j.aeue.2019.152900
    [4] WU Risheng, ZHANG Yixiong, HUANG Yanan, et al. A novel long-time accumulation method for double-satellite TDOA/FD-OA interference localization[J]. Radio Science, 2018, 53(1): 129–142. doi: 10.1002/2017rs006389
    [5] LI Wanchun, CHEN Ruibin, GUO Yuning, et al. Closed form algorithm of double-satellite TDOA+AOA localization based on WGS-84 model[J]. Chinese Journal of Aeronautics, 2019, 32(10): 2354–2367. doi: 10.1016/j.cja.2019.05.016
    [6] ULMAN R J and GERANTIOTIS E. Motion detection using TDOA and FDOA measurements[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(2): 759–764. doi: 10.1109/7.937490
    [7] 孙光才, 王裕旗, 高昭昭, 等. 一种基于短合成孔径的双星干涉精确定位方法[J]. 电子与信息学报, 2020, 42(2): 472–479. doi: 10.11999/JEIT180940

    SUN Guangcai, WANG Yuqi, GAO Zhaozhao, et al. A dual satellite interferometric precise localization method based on short synthetic aperture[J]. Journal of Electronics &Information Technology, 2020, 42(2): 472–479. doi: 10.11999/JEIT180940
    [8] 张宇阳. 利用三星时频差的运动辐射源定位与测速方法[J]. 电讯技术, 2016, 56(6): 640–645. doi: 10.3969/j.issn.1001-893x.2016.06.008

    ZHANG Yuyang. A mobile emitter localization and velocity estimation method using TDOA and FDOA measurements from three satellites[J]. Telecommunication Engineering, 2016, 56(6): 640–645. doi: 10.3969/j.issn.1001-893x.2016.06.008
    [9] 向张俊, 郭福成, 张敏, 等. 基于时差频差角度的低轨双星动目标融合跟踪方法[J]. 航天电子对抗, 2016, 32(3): 27–31. doi: 10.3969/j.issn.1673-2421.2016.03.008

    XIANG Zhangjun, GUO Fucheng, ZHANG Min, et al. Tracking method of moving target fusion for low orbit dual-satellite based on TDOA/FDOA/AOA[J]. Aerospace Electronic Warfare, 2016, 32(3): 27–31. doi: 10.3969/j.issn.1673-2421.2016.03.008
    [10] 郭福成, 李腾. 基于时差和频差的固定多站定位方法及分析[J]. 系统工程与电子技术, 2011, 33(9): 1954–1958. doi: 10.3969/j.issn.1001-506X.2011.09.08

    GUO Fucheng and LI Teng. Passive localization method and its precision analysis based on TDOA and FDOA of fixed sensors[J]. Systems Engineering and Electronics, 2011, 33(9): 1954–1958. doi: 10.3969/j.issn.1001-506X.2011.09.08
    [11] 朱建丰, 何新生, 郝本建. 基于双星TDOA和主星DOA的空中动目标联合定位技术[J]. 电子学报, 2018, 46(6): 1378–1383. doi: 10.3969/j.issn.0372-2112.2018.06.015

    ZHU Jianfeng, HE Xinsheng, and HAO Benjian. A hybrid localization technology for an aerial moving target based on TDOA of dual-satellite and DOA of main satellite[J]. Acta Electronica Sinica, 2018, 46(6): 1378–1383. doi: 10.3969/j.issn.0372-2112.2018.06.015
    [12] DENNIS JR J E and SCHNABEL R B. Numerical Methods for Unconstrained Optimization and Nonlinear Equations[M]. Philadelphia: Society for Industrial and Applied Mathematics, 1996: 218–236.
    [13] HUA Song, HUANG Huiyin, YIN Fangfang, et al. Constant-gain EKF algorithm for satellite attitude determination systems[J]. Aircraft Engineering and Aerospace Technology, 2018, 90(8): 1259–1271. doi: 10.1108/AEAT-03-2017-0088
    [14] 杨宏, 李亚安, 李国辉. 一种改进扩展卡尔曼滤波新方法[J]. 计算机工程与应用, 2010, 46(19): 18–20. doi: 10.3778/j.issn.1002-8331.2010.19.005

    YANG Hong, LI Ya’an, and LI Guohui. New method of improved extended Kalman falter[J]. Computer Engineering and Applications, 2010, 46(19): 18–20. doi: 10.3778/j.issn.1002-8331.2010.19.005
    [15] SHI Hanhai, HE Fajiang, DANG Shuwen, et al. Research on slam algorithm of iterated extended Kalman filtering for multi-sensor fusion[C]. The 3rd International Conference on Communication and Information Processing, Tokyo, Japan, 2017: 242–246. doi: 10.1145/3162957.3162999.
    [16] GARCÍA-FERNÁNDEZ A F and SVENSSON L. Gaussian MAP filtering using Kalman optimization[J]. IEEE Transactions on Automatic Control, 2015, 60(5): 1336–1349. doi: 10.1109/tac.2014.2372909
    [17] 赵梓烨, 刘海鸥, 陈慧岩. 分布式电驱动无人高速履带车辆越野环境轨迹预测方法研究[J]. 兵工学报, 2019, 40(4): 680–688. doi: 10.3969/j.issn.1000-1093.2019.04.002

    ZHAO Ziye, LIU Haiou, and CHEN Huiyan. Research on trajectory prediction method of distributed high speed electric drive unmanned tracked vehicle in off-road conditions[J]. Acta Armamentarii, 2019, 40(4): 680–688. doi: 10.3969/j.issn.1000-1093.2019.04.002
    [18] HU Zilun and YANG Jianying. Distributed optimal formation algorithm for multi-satellites system with time-varying performance function[J]. International Journal of Control, 2020, 93(5): 1015–1026. doi: 10.1080/00207179.2018.1486512
    [19] LUJAN D, CLARK E, and LOVELL T. Optimizing satellite orbital geometries for geolocation using RF localization[C]. The 41st Annual AAS Guidance & Control Conference, Breckenridge, USA, 2018: 85–97.
  • 加载中
图(8)
计量
  • 文章访问数:  1010
  • HTML全文浏览量:  615
  • PDF下载量:  124
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-29
  • 修回日期:  2020-12-09
  • 网络出版日期:  2020-12-31
  • 刊出日期:  2021-10-18

目录

    /

    返回文章
    返回