[1] |
SU Ting and GAO Yong. TDOA estimation of dual-satellites interference localization based on blind separation[J]. Journal of Systems Engineering and Electronics, 2019, 30(4): 696–702. doi: 10.21629/JSEE.2019.04.07
|
[2] |
任凯强, 孙正波. 基于虚拟参考站的同步三星时差定位系统广域差分校正算法[J]. 电子与信息学报, 2019, 41(2): 433–439. doi: 10.11999/JEIT180289REN Kaiqiang and SUN Zhengbo. Wide area difference calibration algorithm based on virtual reference station for tri-satellite TDOA geolocation system[J]. Journal of Electronics &Information Technology, 2019, 41(2): 433–439. doi: 10.11999/JEIT180289
|
[3] |
CHEN Xin, WANG Ding, YIN Jiexin, et al. Augmented Lagrange geolocation algorithm using TDOA measurements and calibration sources in the presence of satellite position errors[J]. AEU - International Journal of Electronics and Communications, 2019, 111: 152900. doi: 10.1016/j.aeue.2019.152900
|
[4] |
WU Risheng, ZHANG Yixiong, HUANG Yanan, et al. A novel long-time accumulation method for double-satellite TDOA/FD-OA interference localization[J]. Radio Science, 2018, 53(1): 129–142. doi: 10.1002/2017rs006389
|
[5] |
LI Wanchun, CHEN Ruibin, GUO Yuning, et al. Closed form algorithm of double-satellite TDOA+AOA localization based on WGS-84 model[J]. Chinese Journal of Aeronautics, 2019, 32(10): 2354–2367. doi: 10.1016/j.cja.2019.05.016
|
[6] |
ULMAN R J and GERANTIOTIS E. Motion detection using TDOA and FDOA measurements[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(2): 759–764. doi: 10.1109/7.937490
|
[7] |
孙光才, 王裕旗, 高昭昭, 等. 一种基于短合成孔径的双星干涉精确定位方法[J]. 电子与信息学报, 2020, 42(2): 472–479. doi: 10.11999/JEIT180940SUN Guangcai, WANG Yuqi, GAO Zhaozhao, et al. A dual satellite interferometric precise localization method based on short synthetic aperture[J]. Journal of Electronics &Information Technology, 2020, 42(2): 472–479. doi: 10.11999/JEIT180940
|
[8] |
张宇阳. 利用三星时频差的运动辐射源定位与测速方法[J]. 电讯技术, 2016, 56(6): 640–645. doi: 10.3969/j.issn.1001-893x.2016.06.008ZHANG Yuyang. A mobile emitter localization and velocity estimation method using TDOA and FDOA measurements from three satellites[J]. Telecommunication Engineering, 2016, 56(6): 640–645. doi: 10.3969/j.issn.1001-893x.2016.06.008
|
[9] |
向张俊, 郭福成, 张敏, 等. 基于时差频差角度的低轨双星动目标融合跟踪方法[J]. 航天电子对抗, 2016, 32(3): 27–31. doi: 10.3969/j.issn.1673-2421.2016.03.008XIANG Zhangjun, GUO Fucheng, ZHANG Min, et al. Tracking method of moving target fusion for low orbit dual-satellite based on TDOA/FDOA/AOA[J]. Aerospace Electronic Warfare, 2016, 32(3): 27–31. doi: 10.3969/j.issn.1673-2421.2016.03.008
|
[10] |
郭福成, 李腾. 基于时差和频差的固定多站定位方法及分析[J]. 系统工程与电子技术, 2011, 33(9): 1954–1958. doi: 10.3969/j.issn.1001-506X.2011.09.08GUO Fucheng and LI Teng. Passive localization method and its precision analysis based on TDOA and FDOA of fixed sensors[J]. Systems Engineering and Electronics, 2011, 33(9): 1954–1958. doi: 10.3969/j.issn.1001-506X.2011.09.08
|
[11] |
朱建丰, 何新生, 郝本建. 基于双星TDOA和主星DOA的空中动目标联合定位技术[J]. 电子学报, 2018, 46(6): 1378–1383. doi: 10.3969/j.issn.0372-2112.2018.06.015ZHU Jianfeng, HE Xinsheng, and HAO Benjian. A hybrid localization technology for an aerial moving target based on TDOA of dual-satellite and DOA of main satellite[J]. Acta Electronica Sinica, 2018, 46(6): 1378–1383. doi: 10.3969/j.issn.0372-2112.2018.06.015
|
[12] |
DENNIS JR J E and SCHNABEL R B. Numerical Methods for Unconstrained Optimization and Nonlinear Equations[M]. Philadelphia: Society for Industrial and Applied Mathematics, 1996: 218–236.
|
[13] |
HUA Song, HUANG Huiyin, YIN Fangfang, et al. Constant-gain EKF algorithm for satellite attitude determination systems[J]. Aircraft Engineering and Aerospace Technology, 2018, 90(8): 1259–1271. doi: 10.1108/AEAT-03-2017-0088
|
[14] |
杨宏, 李亚安, 李国辉. 一种改进扩展卡尔曼滤波新方法[J]. 计算机工程与应用, 2010, 46(19): 18–20. doi: 10.3778/j.issn.1002-8331.2010.19.005YANG Hong, LI Ya’an, and LI Guohui. New method of improved extended Kalman falter[J]. Computer Engineering and Applications, 2010, 46(19): 18–20. doi: 10.3778/j.issn.1002-8331.2010.19.005
|
[15] |
SHI Hanhai, HE Fajiang, DANG Shuwen, et al. Research on slam algorithm of iterated extended Kalman filtering for multi-sensor fusion[C]. The 3rd International Conference on Communication and Information Processing, Tokyo, Japan, 2017: 242–246. doi: 10.1145/3162957.3162999.
|
[16] |
GARCÍA-FERNÁNDEZ A F and SVENSSON L. Gaussian MAP filtering using Kalman optimization[J]. IEEE Transactions on Automatic Control, 2015, 60(5): 1336–1349. doi: 10.1109/tac.2014.2372909
|
[17] |
赵梓烨, 刘海鸥, 陈慧岩. 分布式电驱动无人高速履带车辆越野环境轨迹预测方法研究[J]. 兵工学报, 2019, 40(4): 680–688. doi: 10.3969/j.issn.1000-1093.2019.04.002ZHAO Ziye, LIU Haiou, and CHEN Huiyan. Research on trajectory prediction method of distributed high speed electric drive unmanned tracked vehicle in off-road conditions[J]. Acta Armamentarii, 2019, 40(4): 680–688. doi: 10.3969/j.issn.1000-1093.2019.04.002
|
[18] |
HU Zilun and YANG Jianying. Distributed optimal formation algorithm for multi-satellites system with time-varying performance function[J]. International Journal of Control, 2020, 93(5): 1015–1026. doi: 10.1080/00207179.2018.1486512
|
[19] |
LUJAN D, CLARK E, and LOVELL T. Optimizing satellite orbital geometries for geolocation using RF localization[C]. The 41st Annual AAS Guidance & Control Conference, Breckenridge, USA, 2018: 85–97.
|