高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无人机基站的飞行路线在线优化设计

张广驰 严雨琳 崔苗 陈伟 张景

张广驰, 严雨琳, 崔苗, 陈伟, 张景. 无人机基站的飞行路线在线优化设计[J]. 电子与信息学报, 2021, 43(12): 3605-3611. doi: 10.11999/JEIT200525
引用本文: 张广驰, 严雨琳, 崔苗, 陈伟, 张景. 无人机基站的飞行路线在线优化设计[J]. 电子与信息学报, 2021, 43(12): 3605-3611. doi: 10.11999/JEIT200525
Guangchi ZHANG, Yulin YAN, Miao CUI, Wei CHEN, Jing ZHANG. Online Trajectory Optimization for the UAV-Mounted Base Stations[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3605-3611. doi: 10.11999/JEIT200525
Citation: Guangchi ZHANG, Yulin YAN, Miao CUI, Wei CHEN, Jing ZHANG. Online Trajectory Optimization for the UAV-Mounted Base Stations[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3605-3611. doi: 10.11999/JEIT200525

无人机基站的飞行路线在线优化设计

doi: 10.11999/JEIT200525
基金项目: 广东省科技计划(2017B090909006, 2019B010119001, 2020A050515010, 2021A0505030015),广东特支计划(2019TQ05X409)
详细信息
    作者简介:

    张广驰:男,1982年生,教授,研究方向为新一代无线通信技术

    严雨琳:女,1996年生,硕士生,研究方向为无人机通信、强化学习

    崔苗:女,1978年生,讲师,研究方向为新一代无线通信技术

    陈伟:男,1979年生,高级工程师,研究方向为地质灾害监测与预警

    张景:男,1974年生,研究员级高工,研究方向为新一代信息通信技术

    通讯作者:

    崔苗 cuimiao@gdut.edu.cn

  • 1) 本文主要研究无人机基站的飞行路线在线优化,主要考察飞行路线对通信性能的影响,没有考虑无人机基站的能耗问题。另外,本文考虑的系统模型同样适用于多个无人机基站分别在不同频段上与地面用户通信的场景,并且后文提到的优化算法可以直接扩展到多个地面用户处在一条直线上的场景。
  • 中图分类号: TN915

Online Trajectory Optimization for the UAV-Mounted Base Stations

Funds: The Science and Technology Plan Project of Guangdong Province (2017B090909006, 2019B010119001, 2020A050515010, 2021A0505030015), The Special Support Plan for High-Level Talents of Guangdong Province (2019TQ05X409)
  • 摘要: 针对离线的无人机(UAV)基站飞行路线设计无法满足随机的、动态的地面用户通信请求难题,该文研究了飞行路线在线优化设计算法。考虑单个无人机空中基站为两个地面用户提供无线通信服务,通过在线实时优化无人机的飞行路线实现最小化与地面用户的平均通信时延。首先,由于系统的无人机的状态和动作是连续的,将问题转化成一个马尔可夫决策过程(MDP);然后,把单次通信时延引入到动作价值函数中;最后分别采用强化学习中蒙特卡罗和Q-Learning算法来实现无人机的飞行路线在线优化。仿真结果表明,所提出的在线优化的平均时延性能优于“固定位置”和“贪婪算法”的时延计算结果。
  • 图  1  无人机基站通信系统

    图  2  等待状态时采取不同动作策略的平均通信时延

    图  3  不同算法下的无人机平均通信时延

    图  4  不同传输信息量以及不同算法下的无人机平均通信时延

    图  5  不同算法的收敛程度

    图  6  基于Q-Learning的在线优化设计算法下无人机飞行路线

    图  7  基于蒙特卡罗的在线优化设计算法下无人机飞行路线

  • [1] ZENG Yong, ZHANG Rui, and LIM T J. Wireless communications with unmanned aerial vehicles: Opportunities and challenges[J]. IEEE Communications Magazine, 2016, 54(5): 36–42. doi: 10.1109/MCOM.2016.7470933
    [2] Paving the path to 5G: Optimizing commercial LTE networks for drone communication[EB/OL]. https://www.qualcomm.com/news/onq/2016/09/06/paving-path-5g-optimizing-commercial-lte-networks-drone-communication, 2016.
    [3] ZHANG Guangchi, WU Qingqing, CUI Miao, et al. Securing UAV communications via joint trajectory and power control[J]. IEEE Transactions on Wireless Communications, 2019, 18(2): 1376–1389. doi: 10.1109/TWC.2019.2892461
    [4] WU Qingqing, ZENG Yong, and ZHANG Rui. Joint trajectory and communication design for multi-UAV enabled wireless networks[J]. IEEE Transactions on Wireless Communications, 2018, 17(3): 2109–2121. doi: 10.1109/TWC.2017.2789293
    [5] ZENG Yong, ZHANG Rui, and LIM T J. Throughput maximization for UAV-enabled mobile relaying systems[J]. IEEE Transactions on Communications, 2016, 64(12): 4983–4996. doi: 10.1109/TCOMM.2016.2611512
    [6] ZENG Yong, LYU Jiangbin, and ZHANG Rui. Cellular-connected UAV: Potential, challenges, and promising technologies[J]. IEEE Wireless Communications, 2019, 26(1): 120–127. doi: 10.1109/MWC.2018.1800023
    [7] LYU Jiangbin, ZENG Yong, ZHANG Rui, et al. Placement optimization of UAV-mounted mobile base stations[J]. IEEE Communications Letters, 2017, 21(3): 604–607. doi: 10.1109/LCOMM.2016.2633248
    [8] ZHAN Cheng, ZENG Yong, and ZHANG Rui. Energy-efficient data collection in UAV enabled wireless sensor network[J]. IEEE Wireless Communications Letters, 2018, 7(3): 328–331. doi: 10.1109/LWC.2017.2776922
    [9] ZHANG Guangchi, YAN Haiqiang, ZENG Yong, et al. Trajectory optimization and power allocation for multi-hop UAV relaying communications[J]. IEEE Access, 2018, 6: 48566–48576. doi: 10.1109/ACCESS.2018.2868117
    [10] ZENG Yong and XU Xiaoli. Path design for cellular-connected UAV with reinforcement learning[EB/OL]. http://arxiv.org/abs/1905.03440, 2019.
    [11] 黄长强, 赵克新, 韩邦杰, 等. 一种近似动态规划的无人机机动决策方法[J]. 电子与信息学报, 2018, 40(10): 2447–2452. doi: 10.11999/JEIT180068

    HUANG Changqiang, ZHAO Kexin, HAN Bangjie, et al. Maneuvering decision-making method of UAV based on approximate dynamic programming[J]. Journal of Electronics &Information Technology, 2018, 40(10): 2447–2452. doi: 10.11999/JEIT180068
    [12] BLISS M and MICHELUSI N. Trajectory optimization for rotary-wing UAVs in wireless networks with random requests[EB/OL]. http://arxiv.org/abs/1905.01755, 2019.
    [13] SUTTON R S and BARTO A G. Reinforcement Learning: An Introduction[M]. 2nd ed. Cambridge: MIT Press, 2018: 1–130.
    [14] LIU Xiao, LIU Yuanwei, and CHEN Yue. Reinforcement learning in multiple-UAV networks: Deployment and movement design[J]. IEEE Transactions on Vehicular Technology, 2019, 68(8): 8036–8049. doi: 10.1109/TVT.2019.2922849
    [15] KHAMIDEHI B and SOUSA E S. Reinforcement learning-based trajectory design for the aerial base stations[EB/OL]. https://arxiv.org/abs/1906.09550, 2019.
    [16] ZENG Yong and ZHANG Rui. Energy-efficient UAV communication with trajectory optimization[J]. IEEE Transactions on Wireless Communications, 2017, 16(6): 3747–3760. doi: 10.1109/TWC.2017.2688328
  • 加载中
图(7)
计量
  • 文章访问数:  827
  • HTML全文浏览量:  561
  • PDF下载量:  148
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-29
  • 修回日期:  2021-06-07
  • 网络出版日期:  2021-07-13
  • 刊出日期:  2021-12-21

目录

    /

    返回文章
    返回