Clutter Suppression of Wind Farm Based on Sparse Reconstruction and Morphological Component Analysis for ATC Radar under Short Coherent Processing Interval Condition
-
摘要: 近些年来,世界各国越来越重视风力发电的发展。风电场的存在可能对航管监视雷达性能产生负面影响,因此风电场杂波抑制技术的研究对于提升航管监视雷达工作性能、保障空中交通安全具有重大意义。形态成分分析(MCA)算法根据信号稀疏特征的不同应用于风电场杂波抑制时,计算量较低且性能较好。但是针对实际雷达参数中相参处理间隔(CPI)较短造成的谱分辨率降低及信号特征不明显时,MCA算法的杂波抑制性能受到影响,因此选择将稀疏重构算法与MCA算法结合用于短CPI情况下的风电场杂波抑制。该文认为短CPI接收回波数据为较长CPI雷达回波数据基础上发生尾部数据缺省,继而利用稀疏重构算法对缺省数据进行恢复,再利用MCA算法抑制风电场杂波。实验结果验证了该方法的有效性。Abstract: In recent years, countries around the world have paid more and more attention to the development of wind power. The existence of wind farms may have a negative impact on the performance of air traffic control surveillance radars. Therefore, the research on the clutter suppression technology of wind farms is of great significance to improve the work performance of air traffic control surveillance radars and ensure the safety of air traffic. When the Morphological Component Analysis(MCA)algorithm is applied to the wind farm clutter suppression based on the difference of sparse characteristics for the signals, the calculation burden is lower and the performance is better. However, the clutter suppression performance of the MCA algorithm is affected when the spectral resolution is reduced due to the short Coherent Processing Interval(CPI)and the signal characteristics are not obvious. Therefore, the sparse reconstruction algorithm and the MCA algorithm are combined to suppress the clutter in the wind farm with a small number of coherent pulses. It is considered that the short CPI received echo data is the default of tail data on the basis of the longer CPI radar echo data, and then the sparse reconstruction algorithm is used to recover the default data, and the MCA algorithm is used to suppress wind farm clutter. The experimental results verify the effectiveness of the proposed method.
-
表 1 ALM迭代求解算法
初始化:$\mu > 0,d$ 迭代优化: ${w_1} \leftarrow \mathop {\arg \min }\limits_{{w_1}} \lambda {\left\| {{w_1}} \right\|_1} + 1/2 \cdot \mu \left\| {{w_1} - {x_1} - d} \right\|_2^2$ (8) ${x_1} \leftarrow \mathop {\arg \min }\limits_{ {x_1} } \left\| { {w_1} - {x_1} - d} \right\|_2^2\ \ {\rm{s.t} }.{Y_1} = {{{S}}_1}{{A}}{x_1}$ (9) $d \leftarrow d - ({w_1} - {x_1})$ 直到收敛结束 表 2 对应化简求解算法
初始化:$\mu > 0,d$ 迭代优化: ${w_1} \leftarrow {\rm{soft}}({x_1} + d,\lambda /\mu )$ (10) ${x_1} \!\!\leftarrow\!\! ({w_1} \!\!-\! d) \!\!+\! {\left(\! { { {{S} }_1}{{A} } } \right)^{\rm{H} } }\!{\left[\! { { {{S} }_1}{{A} }{ {({ {{S} }_1}{{A} })}^{\rm{H} } } } \right]^{ - 1} }\!\!\left[ { {Y_1} \!-\! { {{S} }_1}{{A} }({w_1} \!-\! d)} \right]$ (11) $d \leftarrow d - ({w_1} - {x_1})$ 直到收敛结束 表 3 最终求解算法
初始化:$\mu > 0,d$ 迭代优化: ${v_1} \leftarrow {\rm{soft}}({x_1} + d,\lambda /\mu ) - d$ (13) $d \leftarrow \dfrac{1}{p}{ {{A} }^{\rm{H} } }\left( { {Y_1} - {{{S}}_1}{{A} }{v_1} } \right)$ (14) ${x_1} \leftarrow {v_1} + d$ 直到收敛结束 表 4 雷达参数
雷达参数 数值 载频 2.9 GHz 脉冲重复间隔(PRI) 3000 μs 带宽 0.75 MHz 脉冲宽度 270 μs 方位扫描间隔 0.7° 相干脉冲数 6 信噪比(SNR) 10 dB 表 5 风轮机参数
风轮机参数 数值 叶片数目 3 叶片长度 34.4 m 旋转面与雷达波束夹角 84° 单个叶片与雷达波束初始夹角 90° 转速 17 r/min 杂噪比(CNR) 20 dB 表 6 实测数据相关参数
参数 数值 PRI 3230 μs 带宽 0.75 MHz 脉冲宽度 270 μs 采样率 2 MHz 方位扫描间隔 0.7° 相干脉冲数 6 -
[1] 付秋顺. 世界风电行业发展状况分析[J]. 科学技术创新, 2012(7): 106. doi: 10.3969/j.issn.1673-1328.2012.07.124FU Qiushun. Analysis on the development status of the world wind power industry[J]. Scientific and Technological Innovation, 2012(7): 106. doi: 10.3969/j.issn.1673-1328.2012.07.124 [2] THEIL A, SCHOUTEN M W, and DE JONG A. Radar and wind turbines: A guide to acceptance criteria[C]. 2010 IEEE Radar Conference, Washington, USA, 2010: 1355–1361. doi: 10.1109/RADAR.2010.5494405. [3] 中国可再生能源学会风能专业委员会(CWEA). 2018年中国风电吊装容量统计简报[EB/OL]. http://www.nengyuanjie.net/article/25445.html, 2019.China Wind Energy Association (CWEA). 2018 China wind power lifting capacity statistics bulletin[EB/OL]. http://www.nengyuanjie.net/article/25445.html, 2019. [4] KONG Fanxing, ZHANG Yan, and PALMER R. Characterization of micro-Doppler radar signature of commercial wind turbines[C]. SPIE 9077, Radar Sensor Technology XVIII, Baltimore, USA, 2014: 1–8. doi: 10.1117/12.2050029. [5] KRASNOV O A and YAROVOY A G. Polarimetric micro-Doppler characterization of wind turbines[C].The 10th European Conference on Antennas and Propagation (EuCAP), Davos, Switzerland, 2016: 1–5. doi: 10.1109/EuCAP.2016.7481496. [6] PIDANIC J, JURYCA K, and SUHARTANTO H. The modelling of wind turbine influence in the primary radar systems[C]. 2017 International Conference on Advanced Computer Science and Information Systems (ICACSIS), Bali, Indonesia, 2017: 47–52. doi: 10.1109/ICACSIS.2017.8355011. [7] WANG Jian, LOK Y F, HUBBARD O, et al. Impact of wind turbines on ATC radars and mitigation results[C]. 2013 IEEE Radar Conference (RadarCon13), Ottawa, Canada, 2013: 1–4. doi: 10.1109/RADAR.2013.6586095. [8] 何炜琨, 吴仁彪, 王晓亮, 等. 风电场对雷达设备的影响评估与干扰抑制技术研究现状与展望[J]. 电子与信息学报, 2017, 39(7): 1748–1758. doi: 10.11999/JEIT161004HE Weikun, WU Renbiao, WANG Xiaoliang, et al. The review and prospect on the influence evaluation and interference suppression of wind farms on the radar equipment[J]. Journal of Electronics &Information Technology, 2017, 39(7): 1748–1758. doi: 10.11999/JEIT161004 [9] THEIL A and VAN EWIJK L J. Radar performance degradation due to the presence of wind turbines[C]. 2007 IEEE Radar Conference, Boston, USA, 2007: 75–80. doi: 10.1109/RADAR.2007.374194. [10] NAQVI A and LING Hao. Signal filtering technique to remove Doppler clutter caused by wind turbines[J]. Microwave and Optical Technology Letters, 2012, 54(6): 1455–1460. doi: 10.1002/mop.26819 [11] 曹永贵, 方宇, 吴道庆. 基于OMP算法的风轮机杂波滤除研究[J]. 现代雷达, 2019, 41(5): 16–21. doi: 10.16592/j.cnki.1004-7859.2019.05.004CAO Yonggui, FANG Yu, and WU Daoqing. A study on wind turbine clutter mitigation based on OMP algorithm[J]. Modern Radar, 2019, 41(5): 16–21. doi: 10.16592/j.cnki.1004-7859.2019.05.004 [12] KARABAYIR O, UNAL M, COSKUN A F, et al. CLEAN based wind turbine clutter mitigation approach for pulse-Doppler radars[C]. 2015 IEEE Radar Conference (RadarCon), Arlington, USA, 2015: 1541–1544. doi: 10.1109/RADAR.2015.7131241. [13] 吴仁彪, 毛建, 王晓亮, 等. 航管一次雷达抗风电场干扰目标检测方法[J]. 电子与信息学报, 2013, 35(3): 754–758. doi: 10.3724/SP.J.1146.2012.00923WU Renbiao, MAO Jian, WANG Xiaoliang, et al. Target detection of primary surveillance radar in wind farm clutter[J]. Journal of Electronics &Information Technology, 2013, 35(3): 754–758. doi: 10.3724/SP.J.1146.2012.00923 [14] 何炜琨, 窄秋苹, 郭双双, 等. 基于微多普勒特征的风轮机雷达杂波检测[J]. 信号处理, 2017, 33(4): 496–504. doi: 10.16798/j.issn.1003-0530.2017.04.006HE Weikun, ZHAI Qiuping, GUO Shuangshuang, et al. Wind turbine radar clutter detection based on micro-Doppler feature[J]. Journal of Signal Processing, 2017, 33(4): 496–504. doi: 10.16798/j.issn.1003-0530.2017.04.006 [15] UYSAL F, SELESNICK I, PILLAI U, et al. Dynamic clutter mitigation using sparse optimization[J]. IEEE Aerospace and Electronic Systems Magazine, 2014, 29(7): 37–49. doi: 10.1109/MAES.2014.130137 [16] 夏鹏, 田西兰. 基于形态分量分析的风力发电机杂波抑制方法[J]. 空军预警学院学报, 2017, 31(6): 398–402. doi: 10.3969/j.issn.2095-5839.2017.06.003XIA Peng and TIAN Xilan. Wind turbine clutter rejection based on morphological component analysis[J]. Journal of Air Force Early Warning Academy, 2017, 31(6): 398–402. doi: 10.3969/j.issn.2095-5839.2017.06.003 [17] AFONSO M V, BIOUCAS-DIAS J M, and FIGUEIREDO M A T. Fast image recovery using variable splitting and constrained optimization[J]. IEEE Transactions on Image Processing, 2010, 19(9): 2345–2356. doi: 10.1109/TIP.2010.2047910 [18] IVAN S. L1-norm penalized least squares with salsa[EB/OL]. https://eeweb.engineering.nyu.edu/iselesni/lecture_notes/SALSA/SALSA.pdf. [19] BAI Xueru, ZHOU Feng, and HUI Ye. Obtaining JTF-signature of space-debris from incomplete and phase-corrupted data[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(3): 1169–1180. doi: 10.1109/TAES.2017.2667899