高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于粒子群算法寻最优属性关联下的零样本语义自编码器

芦楠楠 张欣茹 欧倪

芦楠楠, 张欣茹, 欧倪. 基于粒子群算法寻最优属性关联下的零样本语义自编码器[J]. 电子与信息学报, 2021, 43(4): 982-991. doi: 10.11999/JEIT200419
引用本文: 芦楠楠, 张欣茹, 欧倪. 基于粒子群算法寻最优属性关联下的零样本语义自编码器[J]. 电子与信息学报, 2021, 43(4): 982-991. doi: 10.11999/JEIT200419
Nannan LU, Xinru ZHANG, Ni OU. Zero-shot Learning by Semantic Autoencoder Based on Particle Swarm Optimization Algorithm for Attribute Correlation[J]. Journal of Electronics & Information Technology, 2021, 43(4): 982-991. doi: 10.11999/JEIT200419
Citation: Nannan LU, Xinru ZHANG, Ni OU. Zero-shot Learning by Semantic Autoencoder Based on Particle Swarm Optimization Algorithm for Attribute Correlation[J]. Journal of Electronics & Information Technology, 2021, 43(4): 982-991. doi: 10.11999/JEIT200419

基于粒子群算法寻最优属性关联下的零样本语义自编码器

doi: 10.11999/JEIT200419
基金项目: 国家自然科学基金(62006233, 51734009, U1710120, 51504241),国家重点研发计划(2019YFE0118500)
详细信息
    作者简介:

    芦楠楠:女,1985年生,讲师,研究方向为模式识别

    张欣茹:女,1996年生,硕士生,研究方向为图像分类、图像分割

    欧倪:男,1998年生,博士生,研究方向为智能优化算法

    通讯作者:

    芦楠楠 lnn_921@126.com

  • 中图分类号: TP18

Zero-shot Learning by Semantic Autoencoder Based on Particle Swarm Optimization Algorithm for Attribute Correlation

Funds: The National Natural Science Foundation of China (62006233, 51734009, U1710120,51504241), The National Key Research and Development Project (2019YFE0118500)
  • 摘要: 针对零样本图像分类构建共享属性层时造成的信息缺失问题,该文提出一种嵌入属性关联性的补偿方法。通过语义自编码器构建特征到属性的映射,然后以最大后验概率估计在类高斯模型构建的基础上实现零样本图像分类。为弥补SAE对属性关系学习的不足,引入加性因子与乘性因子对属性相关性进行嵌入,并利用粒子群算法搜寻最优的因子参数,实现属性相关性信息的补偿。实验结果表明采取相同映射方法的情况下,基于属性相关性嵌入的零样本图像分类在Pubfig数据集和OSR数据集上的分类效果较之其他方法得到了显著提升。
  • 图  1  SAE结构框架

    图  2  OSR和Pubfig数据集属性相关性相比

    图  3  PSO粒子始末分布图

    图  4  分类结果混淆矩阵(OSR数据集)

    图  5  分类结果混淆矩阵(Pubfig数据集)

    表  1  PSA算法伪代码

     输入:${\bf{Score}}$, X, Y, Z(其中,底层特征X分为测试部分${{{X}}_{{\bf{te}}}}$(标签数为m)和训练部分${{{X}}_{{\bf{tr}}}}$(标签数为n), Y为训练集标签集合,Z为测试集标
        签集合)
     输出:Acc(测试准确率)
     PSO:
     初始化设定n, m, ${{{G}}_{\max }}$, ${{{G}}_{\min }}$, ${{{V}}_{\max }}$, ${{{V}}_{\min }}$,Fitness
     求得${{{P}}_{{{g}} - {\rm{best}}}}$, ${\rm{Fitnes}}{{\rm{s}}_{\min }}$解下的G
     For t in $\left[ {1,C_n^m} \right]$ do (交叉验证)
       For i in $ \left[ {1,n} \right]$ do
         确定${{{P}}_{{{g}} - {\rm{best}}}}$以及此解下的G
         AR:G更新${\bf{Scor}}{{\bf{e}}^*}$与属性值排序矩阵O
         SAE:用${{{X}}_{{\bf{tr}}}}$, ${\bf{Scor}}{{\bf{e}}^*}$, ${{{X}}_{{\bf{tr}}}}$, Y, O;求得W, ${\rm{Fitness}} = \mathop {\min }\limits_{{W}} \left\| {{{X}} - {{{W}}^{\rm{T}}}{{S}}} \right\|_{\rm{F}}^2 + \kappa \left\| {{{X}} - {{{W}}^{\rm{T}}}{{S}}} \right\|_{\rm{F}}^2$
           用Fitness确定是否更新${{{P}}_{{{g}} - {\rm{best}}}}$以及该解下的粒子解G
       End
       DAP:用映射矩阵W,粒子群最优解G,属性值排序矩阵O,测试集${{{X}}_{{\bf{te}}}}$及标签Z
         计算每一组交叉验证的测试集精度ACUt
     End
     Acc = mean(ACUt)
    下载: 导出CSV

    表  2  PSO的参数设置

    规模代数参数速度位置
    25020λ[–2 2][–10 10]
    µ[–1 1][–5 5]
    下载: 导出CSV

    表  3  PSO寻优参数及测试精度(Pubfig数据集 测试类别数:2)

    序号测试精度$\lambda $$\mu $序号测试精度$\lambda $$\mu $
    189.79591.7132–0.00391583.93781.41550.1333
    282.05131.9473–0.42591682.38342.00000.1245
    392.82051.0834–0.36641780.52631.4407–0.0169
    475.38461.6065–0.41631868.91191.70210.1057
    589.74361.2878–0.07141988.08291.38920.0619
    669.58761.1262–0.38592087.04661.4444–0.0670
    771.35421.6406–0.49892187.50001.0901–0.0366
    875.52081.3301–0.46312288.54171.0043–0.0176
    992.14661.0432–0.06152385.71431.4594–0.4434
    1091.62301.5004–0.10002489.06251.0434–0.3854
    1189.74361.5019–0.45172576.43981.20330.0182
    1282.56411.3095–0.46472673.29841.3058–0.4541
    1394.32991.2792–0.46212787.62891.27180.0168
    1492.26801.68350.14452880.41241.28600.1277
    下载: 导出CSV

    表  4  OSR数据集的分类精度和AUC值

    m/M2/63/54/45/36/2
    交叉验证组数2856705628
    MeasuresAccAUCAccAUCAccAUCAccAUCAccAUC
    DAP20.800.57824.480.58827.370.58637.640.59554.150.645
    Relative26.790.69531.760.69443.990.71750.710.73260.500.759
    SAE37.010.70548.580.73660.900.72958.150.73664.620.775
    PSA49.880.73154.750.74460.300.72066.770.75275.950.780
    下载: 导出CSV

    表  5  Pubfig数据集的分类精度和AUC值

    $m/M$2/63/54/45/36/2
    交叉验证组数2856705628
    MeasuresAccAUCAccAUCAccAUCAccAUCAccAUC
    DAP16.800.54521.010.57237.180.56646.910.59663.400.636
    Relative23.540.67033.130.65144.800.65854.500.66965.920.733
    SAE44.160.66252.480.67069.360.67376.200.66177.150.671
    PSA52.130.67061.030.68369.470.67476.970.66786.930.678
    下载: 导出CSV
  • LAROCHELLE H, ERHAN D, and BENGIO Y. Zero-data learning of new tasks[C]. The 23rd AAAI Conference on Artificial Intelligence, Chicago, USA, 2008: 646–651.
    LAMPERT C H, NICKISCH H, and HARMELING S. Attribute-based classification for zero-shot visual object categorization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(3): 453–465. doi: 10.1109/TPAMI.2013.140
    BANSAL A, SIKKA K, SHARMA G, et al. Zero-shot object detection[C]. The European Conference on Computer Vision, Munich, Germany, 2018: 397–414. doi: 10.1007/978-3-030-01246-5_24.
    FU Yanwei, XIANG Tao, JIANG Yugang, et al. Recent advances in zero-shot recognition: Toward data-efficient understanding of visual content[J]. IEEE Signal Processing Magazine, 2018, 35(1): 112–125. doi: 10.1109/MSP.2017.2763441
    FARHADI A, ENDRES I, HOIEM D, et al. Describing objects by their attributes[C]. 2019 IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009: 1778–1785. doi: 10.1109/CVPR.2009.5206772.
    PARIKH D and GRAUMAN K. Relative attributes[C]. 2011 International Conference on Computer Vision, Barcelona, Spain, 2011: 6–13. doi: 10.1109/ICCV.2011.6126281.
    CHENG Yuhu, QIAO Xue, WANG Xuesong, et al. Random forest classifier for zero-shot learning based on relative attribute[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(5): 1662–1674. doi: 10.1109/TNNLS.2017.2677441
    乔雪, 彭晨, 段贺, 等. 基于共享特征相对属性的零样本图像分类[J]. 电子与信息学报, 2017, 39(7): 1563–1570. doi: 10.11999/JEIT161133

    QIAO Xue, PENG Chen, DUAN He, et al. Shared features based relative attributes for zero-shot image classification[J]. Journal of Electronics &Information Technology, 2017, 39(7): 1563–1570. doi: 10.11999/JEIT161133
    兰红, 方治屿. 零样本图像识别[J]. 电子与信息学报, 2020, 42(5): 1188–1200. doi: 10.11999/JEIT190485

    LAN Hong and FANG Zhiyu. Recent advances in zero-shot learning[J]. Journal of Electronics &Information Technology, 2020, 42(5): 1188–1200. doi: 10.11999/JEIT190485
    KODIROV E, XIANG Tao, and GONG Shaogang. Semantic autoencoder for zero-shot learning[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 4447–4456. doi: 10.1109/CVPR.2017.473.
    LAMPERT C H, NICKISCH H, and HARMELING S. Learning to detect unseen object classes by between-class attribute transfer[C]. 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009: 951–958. doi: 10.1109/CVPR.2009.5206594.
    KANKUEKUL P, KAWEWONG A, TANGRUAMSUB S, et al. Online incremental attribute-based zero-shot learning[C]. 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, 2012: 3657–3664. doi: 10.1109/CVPR.2012.6248112.
    TAO Rentuo, LI Ziqiang, TAO Renshuai, et al. ResAttr-GAN: Unpaired deep residual attributes learning for multi-domain face image translation[J]. IEEE Access, 2019, 7: 132594–132608. doi: 10.1109/ACCESS.2019.2941272
    冀中, 汪浩然, 于云龙, 等. 零样本图像分类综述: 十年进展[J]. 中国科学: 信息科学, 2019, 49(10): 1299–1320. doi: 10.1360/N112018-00312

    JI Zhong, WANG Haoran, YU Yunlong, et al. A decadal survey of zero-shot image classification[J]. Scientia Sinica:Informationis, 2019, 49(10): 1299–1320. doi: 10.1360/N112018-00312
    张鲁宁, 左信, 刘建伟. 零样本学习研究进展[J]. 自动化学报, 2020, 46(1): 1–23.

    ZHANG Luning, ZUO Xin, and LIU Jianwei. Research and development on zero-shot learning[J]. Acta Automatica Sinica, 2020, 46(1): 1–23.
    WANG Wei, ZHENG V W, YU Han, et al. A survey of zero-shot learning: Settings, methods, and applications[J]. ACM Transactions on Intelligent Systems and Technology, 2019, 10(2): 13. doi: 10.1145/3293318
    LIU Mingxia, ZHANG Daoqiang, and CHEN Songcan. Attribute relation learning for zero-shot classification[J]. Neurocomputing, 2014, 139: 34–46. doi: 10.1016/j.neucom.2013.09.056
    WANG Yang and MORI G. A discriminative latent model of object classes and attributes[C]. European Conference on Computer Vision, Berlin, Germany, 2010: 155–168. doi: 10.1007/978-3-642-15555-0_12.
    BISWAS S and ANNADANI Y. Preserving semantic relations for zero-shot learning[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 7603–7612. doi: 10.1109/CVPR.2018.00793.
    QUERCIA D, O’HARE N K, and CRAMER H. Aesthetic capital: What makes London look beautiful, quiet, and happy?[C]. The 17th ACM Conference on Computer Supported Cooperative Work & Social Computing, New York, USA, 2014: 945–955.
    MIN Weiqing, MEI Shuhuan, LIU Linhu, et al. Multi-task deep relative attribute learning for visual urban perception[J]. IEEE Transactions on Image Processing, 2020, 29: 657–669. doi: 10.1109/TIP.2019.2932502
    QIAO Lingfeng, TUO Hongya, FANG Zheng, et al. Joint probability estimation of attribute chain for zero-shot learning[C]. 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, USA, 2016: 1863–1867. doi: 10.1109/ICIP.2016.7532681.
    巩萍, 程玉虎, 王雪松. 基于属性关系图正则化特征选择的零样本分类[J]. 中国矿业大学学报, 2015, 44(6): 1097–1104.

    GONG Ping, CHENG Yuhu, and WANG Xuesong. Zero-shot classification based on attribute correlation graph regularized feature selection[J]. Journal of China University of Mining &Technology, 2015, 44(6): 1097–1104.
    XIAO Fanyi and LEE Y J. Discovering the spatial extent of relative attributes[C]. 2015 IEEE International Conference on Computer Vision, Santiago, USA, 2015: 1458–1466. doi: 10.1109/ICCV.2015.171.
    SINGH K K and LEE Y J. End-to-end localization and ranking for relative attributes[C]. European Conference on Computer Vision, Amsterdam, Netherlands, 2016: 753–769. doi: 10.1007/978-3-319-46466-4_45.
    KENNEDY J and EBERHART R. Particle swarm optimization[C]. ICNN'95-International Conference on Neural Networks, Perth, Australia, 1995. doi: 10.1109/ICNN.1995.488968.
    ANAMIKA, PEESAPATI R, and KUMAR N. Electricity price forecasting and classification through wavelet–dynamic weighted PSO–FFNN approach[J]. IEEE Systems Journal, 2018, 12(4): 3075–3084. doi: 10.1109/JSYST.2017.2717446
    KUMAR N, BERG A C, BELHUMEUR P N, et al. Attribute and simile classifiers for face verification[C]. The 12th IEEE International Conference on Computer Vision, Kyoto, Japan, 2009: 365–372. doi: 10.1109/ICCV.2009.5459250.
    OLIVA A and TORRALBA A. Modeling the shape of the scene: A holistic representation of the spatial envelope[J]. International Journal of Computer Vision, 2001, 42(3): 145–175. doi: 10.1023/A:1011139631724
    LEE W H, GADER P D, and WILSON J N. Optimizing the area under a receiver operating characteristic curve with application to landmine detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(2): 389–397. doi: 10.1109/TGRS.2006.887018
    CASTRO C L and BRAGA A P. Novel cost-sensitive approach to improve the multilayer perceptron performance on imbalanced data[J]. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24(6): 888–899. doi: 10.1109/TNNLS.2013.2246188
  • 加载中
图(5) / 表(5)
计量
  • 文章访问数:  1222
  • HTML全文浏览量:  388
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-29
  • 修回日期:  2020-12-10
  • 网络出版日期:  2021-01-26
  • 刊出日期:  2021-04-20

目录

    /

    返回文章
    返回