高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非高斯噪声下基于Wilcoxon范数的变步长符号扩散式仿射投影算法

郭莹 于和芳 赵璐 李飞 刘振宇

郭莹, 于和芳, 赵璐, 李飞, 刘振宇. 非高斯噪声下基于Wilcoxon范数的变步长符号扩散式仿射投影算法[J]. 电子与信息学报, 2021, 43(2): 303-309. doi: 10.11999/JEIT200371
引用本文: 郭莹, 于和芳, 赵璐, 李飞, 刘振宇. 非高斯噪声下基于Wilcoxon范数的变步长符号扩散式仿射投影算法[J]. 电子与信息学报, 2021, 43(2): 303-309. doi: 10.11999/JEIT200371
Ying GUO, Hefang YU, Lu ZHAO, Fei LI, Zhenyu LIU. Variable Step Size Sign Diffusion Affine Projection Algorithm Based on Wilcoxon Norm under Non-Gaussian Noise[J]. Journal of Electronics & Information Technology, 2021, 43(2): 303-309. doi: 10.11999/JEIT200371
Citation: Ying GUO, Hefang YU, Lu ZHAO, Fei LI, Zhenyu LIU. Variable Step Size Sign Diffusion Affine Projection Algorithm Based on Wilcoxon Norm under Non-Gaussian Noise[J]. Journal of Electronics & Information Technology, 2021, 43(2): 303-309. doi: 10.11999/JEIT200371

非高斯噪声下基于Wilcoxon范数的变步长符号扩散式仿射投影算法

doi: 10.11999/JEIT200371
基金项目: 国家自然科学基金(61803272)
详细信息
    作者简介:

    郭莹:女,1975年生,副教授,研究方向为自适应滤波,分布式估计

    于和芳:女,1994年生,硕士生,研究方向为自适应滤波

    赵璐:女,1980年生,助理研究员,研究方向为分布式估计,无线定位

    李飞:女,1978年生,讲师,研究方向为模式识别,信息融合

    刘振宇:男,1973年生,教授,研究方向为视觉伺服

    通讯作者:

    刘振宇 liu_zhenyu0419@sina.com

  • 中图分类号: TN958

Variable Step Size Sign Diffusion Affine Projection Algorithm Based on Wilcoxon Norm under Non-Gaussian Noise

Funds: The National Natural Science Foundation of China (61803272)
  • 摘要: 扩散式仿射投影算法(DAPA)是实现分布式网络参数自适应估计的一种重要方法,该算法在输入信号存在相关性时仍快速收敛,但抑制具有脉冲特性的非高斯噪声能力弱,且固定步长对收敛性有所限制。为此,该文提出了基于Wilcoxon范数的变步长符号扩散式仿射投影算法(VSS-DWAPA)。首先,引入稳健估计理论中抗异常值能力强的Wilcoxon范数作为代价函数并根据其取值特点进行了符号量化,推导出了新的迭代方程;其次,针对固定步长的局限性,采用迭代方式实现了误差信号对步长的控制,在初始阶段和接近收敛阶段选择不同的步长,使算法具有更好的适应性。仿真结果表明,在非高斯噪声下本文的VSS-DWAPA算法在收敛性、跟踪性等方面均优于现有一些扩散式自适应滤波算法,同时在高斯噪声环境下也具有较好的性能。
  • 图  1  输入为白高斯信号,各算法在高斯噪声下的NMSD曲线

    图  2  输入为白高斯信号,各算法在非高斯噪声下的NMSD曲线

    图  3  输入为有色信号,各算法在高斯噪声下的NMSD曲线

    图  4  输入为有色信号,各算法在非高斯噪声下的跟踪性能

  • LOPES C G and SAYED A H. Diffusion least-mean squares over adaptive networks: Formulation and performance analysis[J]. IEEE Transactions on Signal Processing, 2008, 56(7): 3122–3136. doi: 10.1109/TSP.2008.917383
    TU Yuansheng and SAYED A H. Mobile adaptive networks[J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(4): 649–664. doi: 10.1109/JSTSP.2011.2125943
    GUO Ye, WU Wenchuan, ZHANG Boming, et al. A distributed state estimation method for power systems incorporating linear and nonlinear models[J]. International Journal of Electrical Power & Energy Systems, 2015, 64: 608–616.
    ABDELMAWGOUD A, JAMSHIDI M, and BENAVIDEZ P. Distributed estimation in multimissile cyber-physical systems with time delay[J]. IEEE Systems Journal, 2020, 14(1): 1491–1502. doi: 10.1109/JSYST.2019.2959546
    CHEN Jianshu and SAYED A H. Diffusion adaptation strategies for distributed optimization and learning over networks[J]. IEEE Transactions on Signal Processing, 2012, 60(8): 4289–4305. doi: 10.1109/TSP.2012.2198470
    LU Lu, ZHAO Haiquan, WANG Wenyuan, et al. Performance analysis of the robust diffusion normalized least mean p-power algorithm[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2018, 65(12): 2047–2051. doi: 10.1109/TCSII.2018.2811729
    NI Jingen, CHEN Jiechen, and CHEN Xiaoping. Diffusion sign-error LMS algorithm: Formulation and stochastic behavior analysis[J]. Signal Processing, 2016, 128: 142–149. doi: 10.1016/j.sigpro.2016.03.022
    LI Leilei and CHAMBERS J A. Distributed adaptive estimation based on the APA algorithm over diffusion networks with changing topology[C]. The 15th IEEE/SP Workshop on Statistical Signal Processing, Cardiff, United Kingdom, 2009: 757–760.
    HU Limei, CHEN Feng, DUAN Shukai, et al. An improved diffusion affine projection estimation algorithm for wireless sensor networks[J]. Circuits, Systems, and Signal Processing, 2020, 39(11): 3173–3188.
    代振, 王平波, 卫红凯. 非高斯背景下基于Sigmoid函数的信号检测[J]. 电子与信息学报, 2019, 41(12): 2945–2950. doi: 10.11999/JEIT190012

    DAI Zhen, WANG Pingbo, and WEI Hongkai. Signal detection based on Sigmoid function in non-Gaussian noise[J]. Journal of Electronics &Information Technology, 2019, 41(12): 2945–2950. doi: 10.11999/JEIT190012
    ZHANG Jiacheng, QIU Tianshuang, LUAN Shengyang, et al. Bounded non-linear covariance based esprit method for noncircular signals in presence of impulsive noise[J]. Digital Signal Processing, 2019, 87: 104–111. doi: 10.1016/j.dsp.2019.01.018
    邱天爽. 相关熵与循环相关熵信号处理研究进展[J]. 电子与信息学报, 2020, 42(1): 105–118. doi: 10.11999/JEIT190646

    QIU Tianshuang. Development in signal processing based on correntropy and cyclic correntropy[J]. Journal of Electronics &Information Technology, 2020, 42(1): 105–118. doi: 10.11999/JEIT190646
    MA Wentao, CHEN Badong, DUAN Jiandong, et al. Diffusion maximum correntropy criterion algorithms for robust distributed estimation[J]. Digital Signal Processing, 2016, 58: 10–19. doi: 10.1016/j.dsp.2016.07.009
    WU Zongze, PENG Siyuan, MA Wentao, et al. Minimum error entropy algorithms with sparsity penalty constraints[J]. Entropy, 2015, 17(5): 3419–3437. doi: 10.3390/e17053419
    SONG Pucha, ZHAO Haiquan, and ZENG Xiangping. Robust diffusion affine projection algorithm with variable step-size over distributed networks[J]. IEEE Access, 2019, 7: 150484–150491. doi: 10.1109/ACCESS.2019.2947636
    YU Yi, LU Lu, ZHENG Zongsheng, et al. DCD-based recursive adaptive algorithms robust against impulsive noise[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67(7): 1359–1363. doi: 10.1109/TCSII.2019.2936407
    倪锦根, 马兰申. 抗脉冲干扰的分布式仿射投影符号算法[J]. 电子学报, 2016, 44(7): 1555–1560.

    NI Jingen and MA Lanshen. Distributed affine projection sign algorithms against impulsive interferences[J]. Acta Electronica Sinica, 2016, 44(7): 1555–1560.
    SEO J H, JUNG S M, and PARK P. Diffusion proportionate affine projection sign algorithm for distributed estimation over network[C]. The 14th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, Phuket, Thailand, 2017: 636–639.
    YU Yi and ZHAO Haiquan. Incremental M-estimate-based least-mean algorithm over distributed network[J]. Electronics Letters, 2016, 52(14): 1270–1272. doi: 10.1049/el.2016.1190
    SINHA S K. Robust analysis of generalized linear mixed models[J]. Journal of the American Statistical Association, 2004, 99(466): 451–460. doi: 10.1198/016214504000000340
    MAJHI B, PANDA G, and MULGREW B. Robust identification using new wilcoxon least mean square algorithm[J]. Electronics Letters, 2009, 45(6): 334–335. doi: 10.1049/el.2009.2582
    BAN S J and KIM S W. Wilcoxon adaptive algorithms for robust identification[J]. Electronics Letters, 2009, 45(18): 958–959. doi: 10.1049/el.2009.1556
    SAHOO U K, PANDA G, and MULGREW B. Sign-regressor wilcoxon and sign-sign wilcoxon[C]. 2010 International Conference on Advances in Recent Technologies in Communication and Computing, Kottayam, India, 2010: 35–39.
    KUMAR S, SAHOO A K, SAHOO U K, et al. QR-based robust diffusion strategies for wireless sensor networks using minimum-Wilcoxon-norm[J]. IET Signal Processing, 2016, 10(5): 439–448. doi: 10.1049/iet-spr.2015.0386
    KUMAR S, SAHOO U K, SAHOO A K, et al. Diffusion minimum-wilcoxon-norm over distributed adaptive networks: Formulation and performance analysis[J]. Digital Signal Processing, 2016, 51: 156–169. doi: 10.1016/j.dsp.2016.02.001
    YOO J W, SHIN J W, and PARK P G. Variable step-size affine projection sign algorithm[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2014, 61(4): 274–278. doi: 10.1109/TCSII.2014.2305013
  • 加载中
图(4)
计量
  • 文章访问数:  1153
  • HTML全文浏览量:  381
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-15
  • 修回日期:  2020-08-20
  • 网络出版日期:  2020-10-28
  • 刊出日期:  2021-02-23

目录

    /

    返回文章
    返回