高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向6G的高分辨率无线信道频域仿真方法及定位技术研究

李元杰 董超 牛凯

李元杰, 董超, 牛凯. 面向6G的高分辨率无线信道频域仿真方法及定位技术研究[J]. 电子与信息学报, 2021, 43(1): 13-20. doi: 10.11999/JEIT200348
引用本文: 李元杰, 董超, 牛凯. 面向6G的高分辨率无线信道频域仿真方法及定位技术研究[J]. 电子与信息学报, 2021, 43(1): 13-20. doi: 10.11999/JEIT200348
Yuanjie LI, Chao DONG, kai NIU. High Resolution Wireless Channel Simulation and Localization Technique for 6G Network[J]. Journal of Electronics & Information Technology, 2021, 43(1): 13-20. doi: 10.11999/JEIT200348
Citation: Yuanjie LI, Chao DONG, kai NIU. High Resolution Wireless Channel Simulation and Localization Technique for 6G Network[J]. Journal of Electronics & Information Technology, 2021, 43(1): 13-20. doi: 10.11999/JEIT200348

面向6G的高分辨率无线信道频域仿真方法及定位技术研究

doi: 10.11999/JEIT200348
基金项目: 国家重点研发计划(2018YFE0205501)
详细信息
    作者简介:

    李元杰:男,1996年生,博士生,研究方向为未来移动通信技术、物理层信号处理以及信道编码

    董超:男,1984年生,副教授,研究方向为无线通信物理层信号处理,包括多天线信号处理、非正交多址接入、多用户预编码、判决反馈均衡器设计、中继信号处理等

    牛凯:男,1976年生,教授,研究方向为迭代信道编码、MIMO空时信号处理、跨层优化、认知无线电、无线网络规划与优化

    通讯作者:

    牛凯 niukai@bupt.edu.cn

  • 中图分类号: TN929.531

High Resolution Wireless Channel Simulation and Localization Technique for 6G Network

Funds: The National Key R&D Program of China (2018YFE0205501)
  • 摘要: 为了应对6G无线信道中的小数时延和同步误差给定位系统带来的挑战,该文提出基于频域等效的高分辨率信道方法仿真以及基于到达角(AOA)信息的高分辨率定位技术。前者通过将信道抽头时延转换到频域处理,在降低时域方法带来的高复杂度的同时实现了高分辨率仿真,为时延定位信息的实现提供基础;后者则通过将迭代信道估计、基于首到达径检测的AOA估计算法与基于AOA信息的位置估计算法结合起来,在同步误差下实现高精度定位。数值仿真结果表明,二者均在相应的实际场景下实现了高分辨率特性。
  • 图  1  接收阵列结构

    图  2  定位系统的一般架构

    图  3  基于首到达径检测的AOA估计算法流程

    图  4  AOA定位问题的几何关系

    图  5  信道时频域统计特性仿真

    图  6  定位误差经验累积概率函数

  • SAAD W, BENNIS M, and CHEN Mingzhe. A vision of 6G wireless systems: Applications, trends, technologies, and open research problems[J]. IEEE Network, 2020, 34(3): 134–142. doi: 10.1109/MNET.001.1900287
    KATZ M, MATINMIKKO-BLUE M, and LATVA-AHO M. 6Genesis flagship program: Building the bridges towards 6G-enabled wireless smart society and ecosystem[C]. The 10th IEEE Latin-American Conference on Communications, Guadalajara, Mexico, 2018: 1–9. doi: 10.1109/LATINCOM.2018.8613209.
    ELMEADAWY S and SHUBAIR R M. 6G wireless communications: Future technologies and research challenges[C]. 2019 International Conference on Electrical and Computing Technologies and Applications (ICECTA), Ras Al Khaimah, United Arab Emirates, 2019: 1–5, doi: 10.1109/ICECTA48151.2019.8959607.
    LATVA-AHO M and LEPPÄNEN K. 6G research vision 1: Key drivers and research challenges for 6G ubiquitous wireless intelligence[EB/OL]. https://www.oulu.fi/6gflagship/6gresearchvision, 2020.
    OPPENHEIM A V and SCHAFER R W. Discrete-Time Signal Processing[M]. United States: Prentice Hall, 1999: 33–65.
    HERMANOWICZ E and ROJEWSKI M. A Nyquist filter of fractional delay[C]. 2013 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), Poznan, Poland, 2013: 124–128.
    ADITYA S, MOLISCH A F, and BEHAIRY H M. A survey on the impact of multipath on wideband time-of-arrival based localization[J]. Proceedings of the IEEE, 2018, 106(7): 1183–1203. doi: 10.1109/JPROC.2018.2819638
    RAPPAPORT T S, XING Yunchou, KANHERE O, et al. Wireless communications and applications above 100 GHz: Opportunities and challenges for 6G and beyond[J]. IEEE Access, 2019, 7: 78729–78757. doi: 10.1109/ACCESS.2019.2921522
    郝本建, 王林林, 李赞, 等. 面向TDOA被动定位的定位节点选择方法[J]. 电子与信息学报, 2019, 41(2): 462–468. doi: 10.11999/JEIT180293

    HAO Benjian, WANG Linlin, LI Zan, et al. Sensor selection method for TDOA passive localization[J]. Journal of Electronics &Information Technology, 2019, 41(2): 462–468. doi: 10.11999/JEIT180293
    孙霆, 董春曦, 毛昱. 一种基于半定松弛技术的TDOA-FDOA无源定位算法[J]. 电子与信息学报, 2020, 42(7): 1599–1605. doi: 10.11999/JEIT190435

    SUN Ting, DONG Chunxi, and MAO Yu. A TDOA-FDOA passive positioning algorithm based on the semi-definite relaxation technique[J]. Journal of Electronics &Information Technology, 2020, 42(7): 1599–1605. doi: 10.11999/JEIT190435
    ERICSSON. System level performance evaluation for RAT-dependent positioning techniques[R]. 3GPP TSG RAN WG1 Meeting #96. R1–1903142.
    XING Yunchou and RAPPAPORT T S. Propagation measurement system and approach at 140 GHz-moving to 6G and above 100 GHz[C]. 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 2018: 1–6, doi: 10.1109/GLOCOM.2018.8647921.
    KURTH R, SNYDER L, and HOVERSTEN V. Detection and estimation theory[R]. Massachusetts Institute of Technology, Research Laboratory of Electronics, Quarterly Progress Report, No. 93 (IX), 177.
    LI Yunxin and HUANG Xiaojing. The simulation of independent Rayleigh faders[J]. IEEE Transactions on Communications, 2002, 50(9): 1503–1514. doi: 10.1109/TCOMM.2002.802562
    PATZOLD M, WANG Chengxiang, and HOGSTAD B O. Two new sum-of-sinusoids-based methods for the efficient generation of multiple uncorrelated Rayleigh fading waveforms[J]. IEEE Transactions on Wireless Communications, 2009, 8(6): 3122–3131. doi: 10.1109/TWC.2009.080769
    PROAKIS J G and SALEHI M. Digital Communications[M]. 5th ed. New York: McGraw-Hill, 2008: 190–193.
    INSERRA D and TONELLO A M. A frequency-domain LOS angle-of-arrival estimation approach in multipath channels[J]. IEEE Transactions on Vehicular Technology, 2013, 62(6): 2812–2818. doi: 10.1109/TVT.2013.2245428
    PAGES-ZAMORA A, VIDAL J, and BROOKS D H. Closed-form solution for positioning based on angle of arrival measurements[C]. The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Pavilhao Altantico, Lisboa, Portugal, 2002: 1522–1526, doi: 10.1109/PIMRC.2002.1045433.
    3GPP. TR38.901 Study on channel model for frequencies from 0.5 to 100 GHz[S]. 2018.
    3GPP. TR38.855 Study on NR positioning support[S]. 2018.
    3GPP. TS38.211 NR Physical channels and modulation (Release 15)[S]. 2018.
    HUAWEI, HISILICON. Performance evaluation for NR positioning[R]. 3GPP TSG RAN WG1 Meeting #96. R1-1901577.
  • 加载中
图(6)
计量
  • 文章访问数:  1212
  • HTML全文浏览量:  443
  • PDF下载量:  141
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-08
  • 修回日期:  2020-09-07
  • 网络出版日期:  2020-10-12
  • 刊出日期:  2021-01-15

目录

    /

    返回文章
    返回