高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

异构云无线接入网下基于功率域NOMA的能效优化算法

唐伦 李子煜 管令进 陈前斌

唐伦, 李子煜, 管令进, 陈前斌. 异构云无线接入网下基于功率域NOMA的能效优化算法[J]. 电子与信息学报, 2021, 43(6): 1706-1714. doi: 10.11999/JEIT200327
引用本文: 唐伦, 李子煜, 管令进, 陈前斌. 异构云无线接入网下基于功率域NOMA的能效优化算法[J]. 电子与信息学报, 2021, 43(6): 1706-1714. doi: 10.11999/JEIT200327
Lun TANG, Ziyu LI, Lingjin GUAN, Qianbin CHEN. Energy Efficiency Optimization Algorithm Based On PD-NOMA Under Heterogeneous Cloud Radio Access Networks[J]. Journal of Electronics & Information Technology, 2021, 43(6): 1706-1714. doi: 10.11999/JEIT200327
Citation: Lun TANG, Ziyu LI, Lingjin GUAN, Qianbin CHEN. Energy Efficiency Optimization Algorithm Based On PD-NOMA Under Heterogeneous Cloud Radio Access Networks[J]. Journal of Electronics & Information Technology, 2021, 43(6): 1706-1714. doi: 10.11999/JEIT200327

异构云无线接入网下基于功率域NOMA的能效优化算法

doi: 10.11999/JEIT200327
基金项目: 国家自然科学基金(62071078),重庆市教委科学技术研究项目(KJZD-M201800601),重庆市重大主题专项项目(cstc2019jscx-zdztzxX0006)
详细信息
    作者简介:

    唐伦:男,1973年生,教授、博士生导师,研究方向为新一代无线通信网络、异构蜂窝网络、软件定义无线网络等

    李子煜:女,1995年生,硕士生,研究方向为资源分配、机器学习

    管令进:男,1995年生,硕士生,研究方向为网络功能虚拟化、无线资源分配、机器学习

    陈前斌:男,1967年生,教授、博士生导师,研究方向为个人通信、多媒体信息处理与传输、下一代移动通信网络等

    通讯作者:

    李子煜 lzy395682410@qq.com

  • 中图分类号: TN929.5

Energy Efficiency Optimization Algorithm Based On PD-NOMA Under Heterogeneous Cloud Radio Access Networks

Funds: The National Natural Science Foundation of China (62071078), The Science and Technology Research Project of Chongqing Education Commission (KJZD-M201800601), The Major Theme Projects in Chongqing (cstc2019jscxzdztzxX0006)
  • 摘要: 针对异构云无线接入网络的频谱效率和能效问题,该文提出一种基于功率域-非正交多址接入(PD-NOMA)的能效优化算法。首先,该算法以队列稳定和前传链路容量为约束,联合优化用户关联、功率分配和资源块分配,并建立网络能效和用户公平的联合优化模型;其次,由于系统的状态空间和动作空间都是高维且具有连续性,研究问题为连续域的NP-hard问题,进而引入置信域策略优化(TRPO)算法,高效地解决连续域问题;最后,针对TRPO算法的标准解法产生的计算量较为庞大,采用近端策略优化(PPO)算法进行优化求解,PPO算法既保证了TRPO算法的可靠性,又有效地降低TRPO的计算复杂度。仿真结果表明,该文所提算法在保证用户公平性约束下,进一步提高了网络能效性能。
  • 图  1  基于PD-NOMA的异构云无线接入网架构

    图  2  前传链路框图

    图  3  两级队列架构

    图  4  PPO算法框图

    图  5  PPO算法下不同batch的网络能效

    图  6  不同到达率的平均队列长度

    图  7  不同算法下的网络能效

    图  8  不同算法下的网络能耗

    表  1  近端策略优化PPO训练Actor网络参数算法

     算法1 近端策略优化(PPO)训练Actor网络参数算法
     (1) 初始化Actor神经网络参数$\theta $以及Critic的神经网络参数${\kappa _v}$
     (2) For episode $G = 1,2,···,1000$ do
     (3)  while经验池D中没有足够的元组do
     (4)   随机选取一个初始状态${s_0}$
     (5)   for step=1, 2, ···, n do
     (6)     定义起始状态$s$,根据策略$\pi (s|\theta )$选取动作$a$
     (7)     采取动作$a$与无线网络环境进行交互后,观察下一
            状态$s'$并计算出奖励回报$r$.
     (8)     通过式(15)计算出累计折扣奖励${R_i}$,将元组
            $({s_i},{a_i},{s'_i},{R_i})$存入经验池$D$中
     (9)   end for
     (10)   end while
     (11)  ${\theta ^{{\rm{old}}}} \leftarrow \theta $
     (12)  for 每次更新回合 do
     (13)   从经验池D中随机采样mini-batch样本
     (14 )  对于Critic网络而言:通过最小Critic网络中的损失函
          数来更新Critic的参数${\kappa _v}$
     (15)   对于Actor网络而言:
     (16)   根据状态${s_i}$,利用式(17)计算优势函数${A_i}$,通过最大
          化actor网络的损失函数来更新Actor的参数$\theta $
     (17)  end for
     (18) End For
    下载: 导出CSV
  • [1] 张广驰, 曾志超, 崔苗, 等. 无线供电混合多址接入网络的资源分配[J]. 电子与信息学报, 2018, 40(12): 3013–3019. doi: 10.11999/JEIT180219

    ZHANG Guangchi, ZENG Zhichao, CUI Miao, et al. Resource allocation for wireless powered hybrid multiple access networks[J]. Journal of Electronics &Information Technology, 2018, 40(12): 3013–3019. doi: 10.11999/JEIT180219
    [2] MOKDAD A, AZMI P, MOKARI N, et al. Cross-layer energy efficient resource allocation in PD-NOMA based H-CRANs: Implementation via GPU[J]. IEEE Transactions on Mobile Computing, 2019, 18(6): 1246–1259. doi: 10.1109/TMC.2018.2860985
    [3] ZHANG Yizhong, WU Gang, DENG Lijun, et al. Arrival rate-based average energy-efficient resource allocation for 5G heterogeneous cloud RAN[J]. IEEE Access, 2019, 7: 136332–136342. doi: 10.1109/ACCESS.2019.2939348
    [4] 陈前斌, 管令进, 李子煜, 等. 基于深度强化学习的异构云无线接入网自适应无线资源分配算法[J]. 电子与信息学报, 2020, 42(6): 1468–1477. doi: 10.11999/JEIT190511

    CHEN Qianbin, GUAN Lingjin, LI Ziyu, et al. Deep reinforcement learning-based adaptive wireless resource allocation algorithm for heterogeneous cloud wireless access network[J]. Journal of Electronics &Information Technology, 2020, 42(6): 1468–1477. doi: 10.11999/JEIT190511
    [5] PENG Mugen, LI Yong, ZHAO Zhongyuan, et al. System architecture and key technologies for 5G heterogeneous cloud radio access networks[J]. IEEE Network, 2015, 29(2): 6–14. doi: 10.1109/MNET.2015.7064897
    [6] HUNG S, HSU H, CHENG S, et al. Delay guaranteed network association for mobile machines in heterogeneous cloud radio access network[J]. IEEE Transactions on Mobile Computing, 2018, 17(12): 2744–2760. doi: 10.1109/TMC.2018.2815702
    [7] TAN Zhongwei, YANG Chuanchuan, and WANG Ziyu. Energy evaluation for cloud RAN employing TDM-PON as front-haul based on a new network traffic modeling[J]. Journal of Lightwave Technology, 2017, 35(13): 2669–2677. doi: 10.1109/JLT.2016.2613095
    [8] DHAINI A R, HO P H, SHEN Gangxiang, et al. Energy efficiency in TDMA-based next-generation passive optical access networks[J]. IEEE/ACM Transactions on Networking, 2014, 22(3): 850–863. doi: 10.1109/TNET.2013.2259596
    [9] WANG Kaiwei, ZHOU Wuyang, and MAO Shiwen. Energy efficient joint resource scheduling for delay-aware traffic in cloud-RAN[C]. 2016 IEEE Global Communications Conference, Washington, USA, 2016: 1–6. doi: 10.1109/GLOCOM.2016.7841793.
    [10] SABELLA D, DE DOMENICO A, KATRANARAS E, et al. Energy efficiency benefits of RAN-as-a-service concept for a cloud-based 5G mobile network infrastructure[J]. IEEE Access, 2014, 2: 1586–1597. doi: 10.1109/ACCESS.2014.2381215
    [11] NEELY M J. Stochastic Network Optimization with Application to Communication and Queueing Systems[M]. Morgan & Claypool, 2010: 1–211. doi: 10.2200/S00271ED1V01Y201006CNT007.
    [12] NGUYEN K K, DUONG T Q, VIEN N A, et al. Non-cooperative energy efficient power allocation game in D2D communication: A multi-agent deep reinforcement learning approach[J]. IEEE Access, 2019, 7: 100480–100490. doi: 10.1109/ACCESS.2019.2930115
    [13] ARULKUMARAN K, DEISENROTH M P, BRUNDAGE M, et al. Deep reinforcement learning: A brief survey[J]. IEEE Signal Processing Magazine, 2017, 34(6): 26–38. doi: 10.1109/MSP.2017.2743240
    [14] NASIR Y S and GUO Dongning. Multi-agent deep reinforcement learning for dynamic power allocation in wireless networks[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(10): 2239–2250. doi: 10.1109/JSAC.2019.2933973
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  1404
  • HTML全文浏览量:  485
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-28
  • 修回日期:  2020-10-05
  • 网络出版日期:  2020-10-12
  • 刊出日期:  2021-06-18

目录

    /

    返回文章
    返回