高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大气折射率波动引起的SAR成像误差分析

汪玲 孙玲玲 宫蕊 朱岱寅

汪玲, 孙玲玲, 宫蕊, 朱岱寅. 大气折射率波动引起的SAR成像误差分析[J]. 电子与信息学报, 2021, 43(3): 665-673. doi: 10.11999/JEIT200285
引用本文: 汪玲, 孙玲玲, 宫蕊, 朱岱寅. 大气折射率波动引起的SAR成像误差分析[J]. 电子与信息学报, 2021, 43(3): 665-673. doi: 10.11999/JEIT200285
Ling WANG, Lingling SUN, Rui GONG, Daiyin ZHU. Error Analysis in SAR Imaging Due to Fluctuation of Atmospheric Refractive Index[J]. Journal of Electronics & Information Technology, 2021, 43(3): 665-673. doi: 10.11999/JEIT200285
Citation: Ling WANG, Lingling SUN, Rui GONG, Daiyin ZHU. Error Analysis in SAR Imaging Due to Fluctuation of Atmospheric Refractive Index[J]. Journal of Electronics & Information Technology, 2021, 43(3): 665-673. doi: 10.11999/JEIT200285

大气折射率波动引起的SAR成像误差分析

doi: 10.11999/JEIT200285
基金项目: 国家重点研发计划(2017YFB0502700),国家自然科学基金(61871217),航空科学基金(20182052011)
详细信息
    作者简介:

    汪玲:女,1977年生,教授,博士生导师,主要研究方向为雷达信号处理、雷达成像、雷达图像处理

    孙玲玲:女,1995年生,硕士生,研究方向为合成孔径雷达成像

    宫蕊:女,1997年生,博士生,研究方向为雷达信号处理、逆合成孔径雷达成像

    朱岱寅:男,1974年生,教授,博士生导师,主要研究方向为雷达信号处理、雷达成像、雷达图像处理

    通讯作者:

    汪玲 tulip_wling@nuaa.edu.cn

  • 中图分类号: TN957

Error Analysis in SAR Imaging Due to Fluctuation of Atmospheric Refractive Index

Funds: The National Key Research and Development Program of China (2017YFB0502700), The National Natural Science Foundation of China(61871217), The Aeronautical Science Foundation of China (20182052011)
  • 摘要: 合成孔径雷达(SAR)成像中通常默认大气折射率为1,即电磁(EM)波速率等于自由空间光速且忽略大气吸收特性,但实际存在的吸收会减弱入射功率,电磁波速率的变化会引起相位误差,从而影响图像重建。该文定量分析电磁波速率波动和大气吸收对雷达图像的影响,理论推导得出大气吸收会导致振幅误差,表现为散射点在图像中的重建幅度误差;电磁波速率波动会导致相位误差,表现为散射点在图像中的重建位置误差。仿真实验验证了误差分析的正确性。该分析进一步完备了SAR成像误差分析,有助于SAR图像正确解译。
  • 图  1  地形平坦时单基SAR中向量和角度示意图

    图  2  吸收引起的滤波效应

    图  3  无折射率误差时的单点和多点目标重建图

    图  4  电磁波速率误差影响下的点目标重建图

    图  5  波速误差导致的SAR图像位置误差的理论值和测量值

    图  6  电磁波速率误差影响下的多目标场景“NUAA”重建图

    图  7  大气吸收作用下的点目标重建图

    图  8  大气吸收作用下的多目标场景“NUAA”重建图

    表  1  电磁波速率误差仿真参数设置

    配置天线到目标距离${R_c}$(km)大气折射率$n$电磁波速率误差$\varDelta {\rm{c}}$(m/s)
    I60$1 + 5 \times 1{0^{ - 4}}$$1.5 \times 1{0^5}$
    II60$1 + 8 \times 1{0^{ - 4}}$$2.4 \times 1{0^5}$
    III30$1 + 5 \times 1{0^{ - 4}}$$1.5 \times 1{0^5}$
    下载: 导出CSV
  • PORCELLO L J. Turbulence-induced phase errors in synthetic-aperture radars[J]. IEEE Transactions on Aerospace and Electronic Systems, 1970, AES-6(5): 636–644. doi: 10.1109/TAES.1970.310064
    DANKLMAYER A, DORING B J, SCHWERDT M, et al. Assessment of atmospheric propagation effects in SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(10): 3507–3518. doi: 10.1109/TGRS.2009.2022271
    DANKLMAYER A. On the influence of the atmosphere on wideband space-borne SAR signal propagation and imaging[C]. The IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Singapore, 2015: 470–473. doi: 10.1109/APSAR.2015.7306251.
    DICKEY F M, DELAURENTIS J M, and DOERRY A W. A SAR imaging model for large-scale atmospheric inhomogeneities[C]. SPIE 5410, Radar Sensor Technology VIII and Passive Millimeter-Wave Imaging Technology VII, Orlando, United States, 2004: 1–9. doi: 10.1117/12.541560.
    MUSCHINSKI A, DICKEY F M, and DOERRY A W. Possible effects of clear-air refractive-index perturbations on SAR images[C]. SPIE 5788, Radar Sensor Technology IX, Orlando, United States, 2005: 25–33. doi: 10.1117/12.605651.
    SHAGAM R N, DICKEY F M, and DOERRY A W. Geometrical optics analysis of clear-air refractive-index perturbations on SAR images[C]. SPIE 6210, Radar Sensor Technology X, Orlando (Kissimmee), United States, 2006: 1–12. doi: 10.1117/12.668326.
    DICKEY F M, DOERRY A W, and ROMERO L A. Degrading effects of the lower atmosphere on long-range airborne synthetic aperture radar imaging[J]. IET Radar, Sonar & Navigation, 2007, 1(5): 329–339. doi: 10.1049/iet-rsn:20060134
    LAWRENCE M, HANSEN C, DESHMUKH S, et al. Characterization of the effects of atmospheric lensing in SAR images[C]. SPIE 7308, Radar Sensor Technology XIII, Orlando, United States, 2009. doi: 10.1117/12.819027.
    寇蕾蕾, 向茂生. 大气折射率时间变化对地球同步轨道圆迹SAR聚焦性能的影响[J]. 测绘学报, 2014, 43(9): 917–923. doi: 10.13485/j.cnki.11-2089.2014.0124

    KOU Leilei and XIANG Maosheng. Effect of temporal variation of atmospheric refraction on geosynchronous circular SAR focusing performance[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(9): 917–923. doi: 10.13485/j.cnki.11-2089.2014.0124
    YAZICI B and WANG Ling. Analysis of artifacts in SAR imagery due to fluctuation in refractive index[J]. IEEE Transactions on Computational Imaging, 2019, 5(3): 450–464. doi: 10.1109/TCI.2019.2895203
    NOLAN C J and CHENEY M. Synthetic aperture inversion[J]. Inverse Problems, 2002, 18(1): 221–235. doi: 10.1088/0266-5611/18/1/315
    NOLAN C J and CHENEY M. Synthetic aperture inversion for arbitrary flight paths and nonflat topography[J]. IEEE Transactions on Image Processing, 2003, 12(9): 1035–1043. doi: 10.1109/TIP.2003.814243
    CHENEY M. Synthetic-aperture assessment of a dispersive surface[J]. International Journal of Imaging Systems and Technology, 2004, 14(1): 28–34. doi: 10.1002/ima.20004
    YARMAN C E, YAZICI B, and CHENEY M. Bistatic synthetic aperture radar imaging for arbitrary flight trajectories[J]. IEEE Transactions on Image Processing, 2008, 17(1): 84–93. doi: 10.1109/TIP.2007.911812
    YAZICI B, CHENEY M, and YARMAN C E. Synthetic-aperture inversion in the presence of noise and clutter[J]. Inverse Problems, 2006, 22(5): 1705–1729. doi: 10.1088/0266-5611/22/5/011
    YANIK H C, LI Zhengmin, and YAZICI B. Computationally efficient FBP-type direct segmentation of synthetic aperture radar images[C]. SPIE 8051, Algorithms for Synthetic Aperture Radar Imagery XVIII, Orlando, United States, 2014: 361–372. doi: 10.1117/12.883762.
    GRIGIS A and SJÖSTRAND J. Microlocal Analysis for Differential Operators: An Introduction[M]. Cambridge, U.K.: Cambridge University Press, 1994.
    BLEISTEIN N and HANDELSMAN R A. Asymptotic Expansions of Integrals[M]. New York: Dover, 1986: 113–140.
    GUILLEMIN V and STERNBERG S. Geometric Asymptotics[M]. Providence, RI: American Mathematical Society, 1977: 211–286.
    闫贺, 王珏, 黄佳, 等. 基于二维速度搜索的星载SAR运动目标聚焦算法研究[J]. 电子与信息学报, 2019, 41(6): 1287–1293. doi: 10.11999/JEIT180663

    YAN He, WANG Jue, HUANG Jia, et al. Moving-targets detection algorithm for spaceborne SAR system based on two-dimensional velocity search method[J]. Journal of Electronics &Information Technology, 2019, 41(6): 1287–1293. doi: 10.11999/JEIT180663
    王沛, 徐伟, 李宁, 等. 星载大斜视聚束SAR变PRI成像技术研究[J]. 电子与信息学报, 2018, 40(10): 2470–2477. doi: 10.11999/JEIT180049

    WANG Pei, XU Wei, LI Ning, et al. Investigation on PRI variation for high squint spaceborn spotlight SAR[J]. Journal of Electronics &Information Technology, 2018, 40(10): 2470–2477. doi: 10.11999/JEIT180049
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  829
  • HTML全文浏览量:  342
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-21
  • 修回日期:  2021-01-13
  • 网络出版日期:  2021-02-25
  • 刊出日期:  2021-03-22

目录

    /

    返回文章
    返回