Design of a 0.3~3.5 GHz Hybrid Continuous Power Amplifier
-
摘要: 混合连续类相比较于传统连续类模型弱化了阻抗条件,简化了宽带匹配难度。该文通过采用混合连续类模型并基于阻抗缓冲概念为理论的新型谐波控制网络,设计了一款跨3个倍频层的混合连续类射频功率放大器。实测结果表明在0.3~3.5 GHz相对带宽为168.4%的频段范围内实现了漏极效率58.4%~72.6%,增益10 dB以上,输出功率为39.8~41.2 dBm。Abstract: Compared with the traditional continuous model, the mixed continuous model weakens the impedance condition and simplifies the difficulty of broadband matching. In this paper, a new type of harmonic control network used a hybrid continuous model and based on the concept of impedance buffering is designed to design a hybrid continuous radio frequency power amplifier that spans three octave layers. The measured results show that the drain efficiency is 58.4%~72.6%, the gain is more than 10 dB, and the output power is 39.8~41.2 dBm in the frequency range of 168.4% relative bandwidth of 0.3~3.5 GHz.
-
表 1 本文设计功放与国内外相关功放性能对比
文献对比 工作模式 频率(GHz) BW(%) PAE(%) DE(%) 增益(dB) Pout(dBm) 年份 文献[2] F类/逆F类 2.4~4.2 54.5 – 55.0~82.0 11~13.6 39.5~41.9 2019 文献[11] 连续类 0.8~3.6 127.0 – 55.8~74.1 10.2~12.2 39.5~42.1 2016 文献[13] 连续F类 0.5~2.3 128.5 52.7~80.7 60.0~81.0 11.7~25.3 39.2~41.2 2017 文献[15] BJ类/F-1类 2.2~2.8 24.0 58.0~75.0 65.9~79.7 12.0~18.0 41.0~43.0 2019 文献[16] 连续B/J类 1.2~2.6 74.0 – 63.0~68.0 10.0~13.6 40.5~41.6 2018 本文 混合连续 0.3~3.5 168.4 – 58.4~72.6 10.0~18.0 39.8~41.2 2019 -
许高明, 刘太君, 叶焱, 等. 基于广义改进型Hammerstein模型的宽带射频功率放大器建模[J]. 电子与信息学报, 2014, 36(12): 3046–3050. doi: 10.3724/sp.j.1146.2014.00545XU Gaoming, LIU Taijun, YE Yan, et al. Broadband radio frequency power amplifier modeling based on generalized augmented Hammerstein models[J]. Journal of Electronics &Information Technology, 2014, 36(12): 3046–3050. doi: 10.3724/sp.j.1146.2014.00545 刘汝卿, 蒋衍, 姜成昊, 等. 应用于激光雷达信号处理系统的放大电路接口设计[J]. 电子与信息学报, 2020, 42(7): 1636–1642. doi: 10.11999/JEIT190427LIU Ruqing, JIANG Yan, JIANG Chenghao, et al. Amplifying circuit interface model for LiDAR signal processing systems[J]. Journal of Electronics &Information Technology, 2020, 42(7): 1636–1642. doi: 10.11999/JEIT190427 CRIPPS S C, TASKER P J, CLARKE A L, et al. On the continuity of high efficiency modes in linear RF power amplifiers[J]. IEEE Microwave and Wireless Components Letters, 2009, 19(10): 665–667. doi: 10.1109/LMWC.2009.2029754 DU Xuekun, YOU Changjiang, CAI Jingye, et al. Novel design space of load modulated continuous class-B/J power amplifier[J]. IEEE Microwave and Wireless Components Letters, 2018, 28(2): 156–158. doi: 10.1109/LMWC.2017.2779883 CANNING T, TASKER P J, and CRIPPS S C. Continuous mode power amplifier design using harmonic clipping contours: Theory and practice[J]. IEEE Transactions on Microwave Theory and Techniques, 2014, 62(1): 100–110. doi: 10.1109/TMTT.2013.2292675 RAWAT K. Design challenges in continuous mode power amplifiers[C]. 2019 IEEE MTT-S International Wireless Symposium (IWS), Guangzhou, China, 2019: 1–3. 孙洪铮, 丁浩, 王志刚. 2~4 GHz宽带高效率功放的设计[J]. 太赫兹科学与电子信息学报, 2018, 16(5): 871–874. doi: 10.11805/tkyda201805.0871SUN Hongzheng, DING Hao, and WANG Zhigang. Design of a broadband high-efficiency power amplifier working in 2-4 GHz[J]. Journal of Terahertz Science and Electronic Information Technology, 2018, 16(5): 871–874. doi: 10.11805/tkyda201805.0871 BOUTAYEB S, GIRY A, SERHAN A, et al. Output matching network design for broadband class B/J power amplifier[C]. The 13th Conference on Ph. D. Research in Microelectronics and Electronics (PRIME), Giardini Naxos, Italy, 2017: 41–44. CHEN Jinhu and HE Songbai. Broadband high-efficiency power amplifiers design based on hybrid continuous modes utilizing the optimal impedances at package plane[C]. 2015 IEEE MTT-S International Microwave Symposium, Phoenix, USA, 2015: 1–4. SHARMA T, DARRAJI R, and GHANNOUCHI F. High efficiency continuous mode power amplifiers using waveform engineering[C]. 2014 Microwave Symposium, Marrakech, Morocco, 2014: 1–4. PANG Jingzhou, HE Songbai, DAI Zhijiang, et al. Design of continuous-mode GaN power amplifier with compact fundamental impedance solutions on package plane[J]. IET Microwaves, Antennas & Propagation, 2016, 10(10): 1056–1064. doi: 10.1049/iet-map.2015.0804 GIOFRE R, COLANTONIO P, GIANNINI F, et al. A new design strategy for multi frequencies passive matching networks[C]. 2007 European Microwave Conference, Munich, Germany, 2007: 838–841. ZHENG Shaoyong, LIU Zhaowu, ZHANG Xiuyin, et al. Design of ultrawideband high-efficiency extended continuous class-F power amplifier[J]. IEEE Transactions on Industrial Electronics, 2018, 65(6): 4661–4669. doi: 10.1109/tie.2017.2772163 CHEN Kenle and PEROULIS D. Design of broadband high-efficiency power amplifier using in-band Class-F–1/F mode-transferring technique[C]. The IEEE/MTT-S International Microwave Symposium Digest, Montreal, Canada, 2012: 1–3. doi: 10.1109/tmtt.2012.2221142. POLURI N and DE SOUZA M M. High-efficiency modes contiguous with class B/J and continuous class F-1 amplifiers[J]. IEEE Microwave and Wireless Components Letters, 2019, 29(2): 137–139. doi: 10.1109/lmwc.2018.2886655 ZHANG Zhiwei, LIU Guohua, SUN Hao, et al. A broadband high efficiency class-J power amplifier with a novel output matching method[C]. The 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE), Hangzhou, China, 2018: 1–4.