高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于微控制器的AES激光注入攻击研究

姜会龙 朱翔 李悦 马英起 上官士鹏 韩建伟 蔡莹

姜会龙, 朱翔, 李悦, 马英起, 上官士鹏, 韩建伟, 蔡莹. 基于微控制器的AES激光注入攻击研究[J]. 电子与信息学报, 2021, 43(5): 1357-1364. doi: 10.11999/JEIT200163
引用本文: 姜会龙, 朱翔, 李悦, 马英起, 上官士鹏, 韩建伟, 蔡莹. 基于微控制器的AES激光注入攻击研究[J]. 电子与信息学报, 2021, 43(5): 1357-1364. doi: 10.11999/JEIT200163
HuiLong JIANG, Xiang ZHU, Yue LI, Yingqi MA, Shipeng SHANGGUAN, Jianwei HAN, Ying CAI. Research on Laser Injection Attack for AES Based on Micro-Controller Unit[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1357-1364. doi: 10.11999/JEIT200163
Citation: HuiLong JIANG, Xiang ZHU, Yue LI, Yingqi MA, Shipeng SHANGGUAN, Jianwei HAN, Ying CAI. Research on Laser Injection Attack for AES Based on Micro-Controller Unit[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1357-1364. doi: 10.11999/JEIT200163

基于微控制器的AES激光注入攻击研究

doi: 10.11999/JEIT200163
基金项目: 中国科学院重点部署项目(KGFZD-135-16-005),中国科学院空间科学预先研究项目(XDA15014600)
详细信息
    作者简介:

    姜会龙:男,1994年生,博士生,研究方向为密码芯片激光故障攻击

    朱翔:男,1985年生,高级工程师,研究方向为器件辐射效应

    李悦:女,1987年生,助理研究员,研究方向为数字集成电路可靠性分析方法

    通讯作者:

    朱翔  zhuxiang@nssc.ac.cn

  • 中图分类号: TN918.2

Research on Laser Injection Attack for AES Based on Micro-Controller Unit

Funds: The Key Deployment Projects of Chinese Academy of Sciences (KGFZD-135-16-005), The Space Science Advance Research Projects of Chinese Academy of Sciences (XDA15014600)
  • 摘要: 密码设备面临故障攻击的威胁,针对密码芯片的故障攻击手段研究是密码学和硬件安全领域的重要研究方向。脉冲激光具有较好的时空分辨性,是一种准确度较高的故障攻击手段。该文详细描述了激光注入攻击的原理和方法,以集成AES-128算法的微控制器(MCU)为例实施了激光注入攻击实验。实验以微控制器的SRAM为攻击目标,分别成功实现了差分故障攻击和子密钥编排攻击,恢复了其16 Byte的完整密钥,其中后一种攻击是目前首次以激光的手段实现。研究表明,激光注入攻击能准确定位关键数据存放的物理位置,并能在任意的操作中引入错误,实现单比特的数据翻转,满足故障攻击模型的需求。激光注入攻击能在较短时间内完成自动攻击和密文收集,攻击过程贴近真实场景,对密码芯片具有极大的威胁。
  • 图  1  第9轮输入的故障差分传播

    图  2  攻击第9轮子密钥编排的第1个字节

    图  3  实验平台

    图  4  ATMEGA163L型微控制器及背部的版图

    图  5  10轮AES功耗曲线(黑)及触发激光的方波信号(红)

    图  6  差分故障攻击的有效区域

    图  7  后3轮功耗及攻击子密钥的有效时间段

    表  1  攻击第9轮输入的字节位置及恢复的密钥字节

    输入错误
    字节位置
    恢复字密钥字节密文对
    数目
    最终候
    选值(0x)
    10$K_0^{10},K_7^{10},K_{10}^{10},K_{13}^{10}$313, 17, A7, 2B
    3$K_{\rm{1}}^{10},K_{\rm{4}}^{10},K_{{\rm{11}}}^{10},K_{{\rm{14}}}^{10}$411, E3, 8B, 30
    7$K_2^{10},K_5^{10},K_8^{10},K_{15}^{10}$41D, 94, F3, C5
    11$K_3^{10},K_6^{10},K_9^{10},K_{12}^{10}$47F, 4A, 07, 4D
    下载: 导出CSV

    表  2  经步骤(1)筛选后的候选值情况

    $K_{\rm{7}}^{10}$$K_{{\rm{15}}}^{10}$${a_1}$${a_{\rm{2}}}$
    10x170xC50x200x20
    20x530xC30x770x9C
    下载: 导出CSV

    表  3  经步骤(2)筛选后的候选值情况

    $K_{\rm{7}}^{10}$$K_{{\rm{11}}}^{10}$$K_{{\rm{15}}}^{10}$${a_1}$${a_{\rm{2}}}$
    候选0x170x8B0xC50x200x20
    下载: 导出CSV

    表  4  经步骤(3)筛选后的候选值情况

    $K_{\rm{3}}^{10}$$K_{\rm{7}}^{10}$$K_{{\rm{11}}}^{10}$$K_{{\rm{15}}}^{10}$${a_1}$${a_{\rm{2}}}$
    候选0x7F0x170x8B0xC50x200x20
    下载: 导出CSV
  • [1] 陈华, 习伟, 范丽敏, 等. 密码产品的侧信道分析与评估[J]. 电子与信息学报, 2020, 42(8): 1836–1845. doi: 10.11999/JEIT190853

    CHEN Hua, XI Wei, FAN Limin, et al. Side channel analysis and evaluation on cryptographic products[J]. Journal of Electronics &Information Technology, 2020, 42(8): 1836–1845. doi: 10.11999/JEIT190853
    [2] 王安, 葛婧, 商宁, 等. 侧信道分析实用案例概述[J]. 密码学报, 2018, 5(4): 383–398. doi: 10.13868/j.cnki.jcr.000249

    WANG An, GE Jing, SHANG Ning, et al. Practical cases of side-channel analysis[J]. Journal of Cryptologic Research, 2018, 5(4): 383–398. doi: 10.13868/j.cnki.jcr.000249
    [3] DUSART P, LETOURNEUX G, and VIVOLO O. Differential fault analysis on A. E. S[C]. The 1st International Conference on Applied Cryptography and Network Security, Kunming, China, 2003: 293–306. doi: 10.1007/978-3-540-45203-4_23.
    [4] PIRET G and QUISQUATER J J. A differential fault attack technique against SPN structures, with application to the AES and KHAZAD[C]. The 5th International Workshop on Cryptographic Hardware and Embedded Systems, Cologne, Germany, 2003: 77–88. doi: 10.1007/978-3-540-45238-6_7.
    [5] KIM C H and QUISQUATER J J. New differential fault analysis on AES key schedule: Two faults are enough[C]. The 8th International Conference on Smart Card Research and Advanced Applications, London, UK, 2008: 48–60. doi: 10.1007/978-3-540-85893-5_4.
    [6] TUNSTALL M, MUKHOPADHYAY D, and ALI S. Differential fault analysis of the advanced encryption standard using a single fault[C]. The 5th IFIP WG 11.2 International Conference on Information Security Theory and Practice: Security and Privacy of Mobile Devices in Wireless Communication, Heraklion, Crete, Greece, 2011: 224–233. doi: 10.1007/978-3-642-21040-2_15.
    [7] LIAO Nan, CUI Xiaoxin, LIAO Kai, et al. Improving DFA attacks on AES with unknown and random faults[J]. Science China Information Sciences, 2017, 60(4): 042401. doi: 10.1007/s11432-016-0071-7
    [8] ZHANG Fan, LOU Xiaoxuan, ZHAO Xinjie, et al. Persistent fault analysis on block ciphers[J]. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2018, 2018(3): 150–172. doi: 10.13154/tches.v2018.i3.150-172
    [9] GRUBER M and SELMKE B. Differential fault attacks on KLEIN[C]. The 10th International Workshop on Constructive Side-Channel Analysis and Secure Design, Darmstadt, Germany, 2019: 80–95. doi: 10.1007/978-3-030-16350-1_6.
    [10] VAFAEI N, BAGHERI N, SAHA S, et al. Differential fault attack on SKINNY block cipher[C]. The 8th International Conference on Security, Privacy, and Applied Cryptography Engineering, Kanpur, India, 2018: 177–197. doi: 10.1007/978-3-030-05072-6_11.
    [11] 袁庆军, 张勋成, 高杨, 等. 轻量级分组密码PUFFIN的差分故障攻击[J]. 电子与信息学报, 2020, 42(6): 1519–1525. doi: 10.11999/JEIT190506

    YUAN Qingjun, ZHANG Xuncheng, GAO Yang, et al. Differential fault attack on the lightweight block cipher PUFFIN[J]. Journal of Electronics &Information Technology, 2020, 42(6): 1519–1525. doi: 10.11999/JEIT190506
    [12] 王如燕. 针对AES结构的差分故障分析方法效率改进研究[D]. [硕士论文], 南京航空航天大学, 2019. doi: 10.27239/d.cnki.gnhhu.2019.001818.

    WANG Ruyan. Research on efficiency improvement of differential fault analysis for AES structure[D]. [Master dissertation], Nanjing University of Aeronautics and Astronautics, 2019. doi: 10.27239/d.cnki.gnhhu.2019.001818.
    [13] AGOYAN M, DUTERTRE J M, MIRBAHA A P, et al. Single-bit DFA using multiple-byte laser fault injection[C]. 2010 IEEE International Conference on Technologies for Homeland Security, Waltham, USA, 2010: 113–119. doi: 10.1109/THS.2010.5655079.
    [14] ROSCIAN C, DUTERTRE J M, and TRIA A. Frontside laser fault injection on cryptosystems – Application to the AES’ last round[C]. 2013 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST), Austin, USA, 2013: 119–124. doi: 10.1109/HST.2013.6581576.
    [15] COURBON F, LOUBET-MOUNDI P, FOURNIER J J A, et al. Increasing the efficiency of laser fault injections using fast gate level reverse engineering[C]. 2014 IEEE International Symposium on Hardware-oriented Security and Trust (HOST), Arlington, USA, 2014: 60–63. doi: 10.1109/HST.2014.6855569.
    [16] BREIER J, JAP D, and CHEN C N. Laser-based Fault Injection on Microcontrollers[M]. PATRANABIS S and MUKHOPADHYAY D. Fault Tolerant Architectures for Cryptography and Hardware Security. Singapore: Springer, 2018: 81–100. doi: 10.1007/978-981-10-1387-4_5.
    [17] ZHANG Fan, ZHANG Yiran, JIANG Huilong, et al. Persistent fault attack in practice[J]. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2020, 2020(2): 172–195. doi: 10.13154/tches.v2020.i2.172-195
    [18] 王红胜, 纪道刚, 张阳, 等. 针对RSA-CRT数字签名的光故障攻击研究[J]. 电子设计工程, 2015, 23(6): 12–15. doi: 10.14022/j.cnki.dzsjgc.2015.06.004

    WANG Hongsheng, JI Daogang, ZHANG Yang, et al. Optical fault attack on RSA-CRT signatures[J]. Electronic Design Engineering, 2015, 23(6): 12–15. doi: 10.14022/j.cnki.dzsjgc.2015.06.004
    [19] 朱磊, 陈力颖. 低成本eSIM芯片抗激光故障注入攻击的防护设计[J]. 电子元器件与信息技术, 2019, 3(11): 7–10. doi: 10.19772/j.cnki.2096-4455.2019.11.004

    ZHU Lei and CHEN Liying. Protection design of low cost eSIM chip against laser fault injection attack[J]. Electronic Component and Information Technology, 2019, 3(11): 7–10. doi: 10.19772/j.cnki.2096-4455.2019.11.004
    [20] RODRIGUEZ J, BALDOMERO A, MONTILLA V, et al. LLFI: Lateral laser fault injection attack[C]. 2019 Workshop on Fault Diagnosis and Tolerance in Cryptography, Atlanta, USA, 2019: 41–47. doi: 10.1109/FDTC.2019.00014.
    [21] YUCE B, SCHAUMONT P, and WITTEMAN M. Fault attacks on secure embedded software: Threats, design, and evaluation[J]. Journal of Hardware and Systems Security, 2018, 2(2): 111–130. doi: 10.1007/s41635-018-0038-1
    [22] 王沛晶. 集成电路奇偶校验故障注入检测方法研究[D]. [硕士论文], 天津大学, 2018. doi: 10.27356/d.cnki.gtjdu.2018.002203.

    WANG Peijing. Research on parity code-based fault detection of integrated circuit against fault injection attack[D]. [Master dissertation], Tianjin University, 2018. doi: 10.27356/d.cnki.gtjdu.2018.002203.
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  1283
  • HTML全文浏览量:  720
  • PDF下载量:  117
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-10
  • 修回日期:  2020-10-25
  • 网络出版日期:  2020-11-19
  • 刊出日期:  2021-05-18

目录

    /

    返回文章
    返回