高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多尺度卷积神经网络的自适应熵加权决策融合船舶图像分类方法

任永梅 杨杰 郭志强 曹辉

任永梅, 杨杰, 郭志强, 曹辉. 基于多尺度卷积神经网络的自适应熵加权决策融合船舶图像分类方法[J]. 电子与信息学报, 2021, 43(5): 1424-1431. doi: 10.11999/JEIT200102
引用本文: 任永梅, 杨杰, 郭志强, 曹辉. 基于多尺度卷积神经网络的自适应熵加权决策融合船舶图像分类方法[J]. 电子与信息学报, 2021, 43(5): 1424-1431. doi: 10.11999/JEIT200102
Yongmei REN, Jie YANG, Zhiqiang GUO, Hui CAO. Self-adaptive Entropy Weighted Decision Fusion Method for Ship Image Classification Based on Multi-scale Convolutional Neural Network[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1424-1431. doi: 10.11999/JEIT200102
Citation: Yongmei REN, Jie YANG, Zhiqiang GUO, Hui CAO. Self-adaptive Entropy Weighted Decision Fusion Method for Ship Image Classification Based on Multi-scale Convolutional Neural Network[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1424-1431. doi: 10.11999/JEIT200102

基于多尺度卷积神经网络的自适应熵加权决策融合船舶图像分类方法

doi: 10.11999/JEIT200102
基金项目: 国家自然科学基金 (51879211),国家重点研发计划(2020YFB1710800),湖南省教育厅科学研究项目(18C0900)
详细信息
    作者简介:

    任永梅:女,1988年生,博士生,研究方向为图像处理与模式识别

    杨杰:女,1960年生,教授,研究方向为图像处理与模式识别

    郭志强:男,1976年生,教授,研究方向为图像处理与模式识别

    曹辉:男,1986年生,讲师,研究方向为数字信号的智能处理

    通讯作者:

    杨杰 jieyang@whut.edu.cn

  • 中图分类号: TN911.73; TP391.4

Self-adaptive Entropy Weighted Decision Fusion Method for Ship Image Classification Based on Multi-scale Convolutional Neural Network

Funds: The National Natural Science Foundation of China (51879211), The National Key Research and Development Program of China (2020YFB1710800), The Scientific Research Project of the Hunan Provincial Education Department (18C0900)
  • 摘要: 针对单一尺度卷积神经网络(CNN)对船舶图像分类的局限性,该文提出一种多尺度CNN自适应熵加权决策融合方法用于船舶图像分类。首先使用多尺度CNN提取不同尺寸的船舶图像的多尺度特征,并训练得到不同子网络的最优模型;接着利用测试集船舶图像在最优模型上测试,得到多尺度CNN的Softmax函数输出的概率值,并计算得到信息熵,进而实现对不同输入船舶图像赋予自适应的融合权重;最后对不同子网络的Softmax函数输出概率值进行自适应熵加权决策融合实现船舶图像的最终分类。在VAIS数据集和自建数据集上分别进行了实验,提出的方法的分类准确率分别达到了95.07%和97.50%,实验结果表明,与单一尺度CNN分类方法以及其他较新方法相比,所提方法具有更优的分类性能。
  • 图  1  多尺度卷积神经网络

    图  2  CNN1网络结构和参数

    图  3  CNN2网络结构和参数

    图  4  本文方法的总体流程图

    图  5  本文方法的分类结果的混淆矩阵。

    表  1  VAIS数据集的训练样本和测试样本数量

    序号类名训练测试
    1medium-other9986
    2merchant10371
    3medium-passenger7862
    4sailing214198
    5small342313
    6tug3720
    合计873750
    下载: 导出CSV

    表  2  自建数据集的训练样本和测试样本数量

    序号类名训练测试
    1散货船1385346
    2集装箱船2381595
    3客船1632408
    4帆船1803450
    合计72011799
    下载: 导出CSV

    表  3  不同方法在VAIS数据集上的分类准确率和对于每幅图像用于特征提取的平均时间消耗

    方法分类准确率(%)特征提取时间(ms)
    CNN192.130.104
    CNN290.930.045
    CNN390.670.092
    本文方法95.070.391
    下载: 导出CSV

    表  4  不同方法在自建数据集上的分类准确率和对于每幅图像用于特征提取的平均时间消耗

    方法分类准确率(%)特征提取时间(ms)
    CNN196.500.047
    CNN294.610.048
    CNN396.160.071
    本文方法97.500.396
    下载: 导出CSV

    表  5  不同方法在VAIS数据集上对每一类的分类准确率(%)

    方法类别
    medium-othermerchantmedium-passengersailingsmalltug
    CNN180.2387.3288.7194.9594.89100.00
    CNN283.7287.3270.9693.9495.8590.00
    CNN381.4094.3775.80100.0089.7885.00
    本文方法87.2194.3780.65100.0096.81100.00
    下载: 导出CSV

    表  6  不同方法在自建数据集上对每一类的分类准确率(%)

    方法类别
    散货船集装箱船客船帆船
    CNN195.9595.9796.5697.56
    CNN289.6096.3096.8194.22
    CNN394.2297.4893.1498.67
    本文方法96.5397.8296.5798.67
    下载: 导出CSV

    表  7  本文方法与其他方法在VAIS数据集上的分类准确率和误分类样本数

    方法分类准确率(%)误分类样本数
    文献[3]方法87.4794
    文献[20]方法90.2773
    文献[13]方法84.80114
    文献[12]方法90.9368
    文献[21]方法86.9398
    文献[22]方法90.0075
    最大输出概率决策融合法94.8039
    多数投票法94.0045
    本文方法95.0737
    下载: 导出CSV

    表  8  本文方法与其他方法在自建数据集上的分类准确率和误分类样本数

    方法分类准确率(%)误分类样本数
    文献[3]方法89.16195
    文献[20]方法93.72113
    文献[12]方法94.6197
    文献[21]方法92.94127
    文献[22]方法96.2268
    文献[13]方法94.11106
    最大输出概率决策融合法97.1152
    多数投票法96.8357
    本文方法97.5045
    下载: 导出CSV
  • [1] ZHANG Erhu, WANG Kelu, and LIN Guangfeng. Classification of marine vessels with multi-feature structure fusion[J]. Applied Sciences, 2019, 9(10): 2153. doi: 10.3390/app9102153
    [2] DONG Chao, LIU Jinghong, and XU Fang. Ship detection in optical remote sensing images based on saliency and a rotation-invariant descriptor[J]. Remote Sensing, 2018, 10(3): 400. doi: 10.3390/rs10030400
    [3] 吴映铮, 杨柳涛. 基于HOG和SVM的船舶图像分类算法[J]. 上海船舶运输科学研究所学报, 2019, 42(1): 58–64.

    WU Yingzheng and YANG Liutao. Ship image classification by combined use of HOG and SVM[J]. Journal of Shanghai Ship and Shipping Research Institute, 2019, 42(1): 58–64.
    [4] PARAMESWARAN S and RAINEY K. Vessel classification in overhead satellite imagery using weighted “bag of visual words”[C]. SPIE 9476, Automatic Target Recognition XXV, Baltimore, USA, 2015: 947609. doi: 10.1117/12.2177779.
    [5] ARGUEDAS V F. Texture-based vessel classifier for electro-optical satellite imagery[C]. 2015 IEEE International Conference on Image Processing, Quebec City, Canada, 2015: 3866–3870. doi: 10.1109/ICIP.2015.7351529.
    [6] 王鑫, 李可, 宁晨, 等. 基于深度卷积神经网络和多核学习的遥感图像分类方法[J]. 电子与信息学报, 2019, 41(5): 1098–1105. doi: 10.11999/JEIT180628

    WANG Xin, LI Ke, NING Chen, et al. Remote sensing image classification method based on deep convolution neural network and multi-kernel learning[J]. Journal of Electronics &Information Technology, 2019, 41(5): 1098–1105. doi: 10.11999/JEIT180628
    [7] 李健伟, 曲长文, 彭书娟, 等. 基于生成对抗网络和线上难例挖掘的SAR图像舰船目标检测[J]. 电子与信息学报, 2019, 41(1): 143–149. doi: 10.11999/JEIT180050

    LI Jianwei, QU Changwen, PENG Shujuan, et al. Ship detection in SAR images based on generative adversarial network and online hard examples mining[J]. Journal of Electronics &Information Technology, 2019, 41(1): 143–149. doi: 10.11999/JEIT180050
    [8] CHEN Yunfan, XIE Han, and SHIN H. Multi-layer fusion techniques using a CNN for multispectral pedestrian detection[J]. IET Computer Vision, 2018, 12(8): 1179–1187. doi: 10.1049/iet-cvi.2018.5315
    [9] 闫河, 王鹏, 董莺艳, 等. 一种CNN与ELM相结合的船舶分类识别方法[J]. 重庆理工大学学报: 自然科学, 2019, 33(1): 53–57. doi: 10.3969/j.issn.1674-8425(z).2019.01.008

    YAN He, WANG Peng, DONG Yingyan, et al. A classification identification method of ships combining CNN and ELM[J]. Journal of Chongqing Institute of Technology:Natural Science, 2019, 33(1): 53–57. doi: 10.3969/j.issn.1674-8425(z).2019.01.008
    [10] 陈兴伟. 深度学习船舶分类技术研究[J]. 舰船科学技术, 2019, 41(7A): 142–144. doi: 10.3404/j.issn.1672-7649.2019.7A.048

    CHEN Xingwei. Research on ship classification technology based on deep learning[J]. Ship Science and Technology, 2019, 41(7A): 142–144. doi: 10.3404/j.issn.1672-7649.2019.7A.048
    [11] SHI Qiaoqiao, LI Wei, TAO Ran, et al. Ship classification based on multifeature ensemble with convolutional neural network[J]. Remote Sensing, 2019, 11(4): 419. doi: 10.3390/rs11040419
    [12] BENTES C, VELOTTO D, and TINGS B. Ship classification in TerraSAR-X images with convolutional neural networks[J]. IEEE Journal of Oceanic Engineering, 2018, 43(1): 258–266. doi: 10.1109/JOE.2017.2767106
    [13] 杨亚东, 王晓峰, 潘静静. 改进CNN及其在船舶识别中的应用[J]. 计算机工程与设计, 2018, 39(10): 3228–3233. doi: 10.16208/j.issn1000-7024.2018.10.039

    YANG Yadong, WANG Xiaofeng, and PAN Jingjing. Improved CNN and its application in ship identification[J]. Computer Engineering and Design, 2018, 39(10): 3228–3233. doi: 10.16208/j.issn1000-7024.2018.10.039
    [14] LI Xiaobin, JIANG Bitao, SUN Tong, et al. Remote sensing scene classification based on decision-level fusion[C]. 2018 IEEE 4th Information Technology and Mechatronics Engineering Conference, Chongqing, China, 2018: 393–397. doi: 10.1109/ITOEC.2018.8740526.
    [15] GENG Jie, JIANG Wen, and DENG Xinyang. Multi-scale deep feature learning network with bilateral filtering for SAR image classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 167: 201–213. doi: 10.1016/j.isprsjprs.2020.07.007
    [16] 李凯, 韩冰, 张景滔. 基于条件随机场与多尺度卷积神经网络的交通标志检测与识别[J]. 计算机应用, 2018, 38(S2): 270–275.

    LI Kai, HAN Bing, and ZHANG Jingtao. Traffic sign detection and recognition based on conditional random field and multi-scale convolutional neural network[J]. Journal of Computer Applications, 2018, 38(S2): 270–275.
    [17] REN Yongmei, YANG Jie, ZHANG Qingnian, et al. Multi-feature fusion with convolutional neural network for ship classification in optical images[J]. Applied Sciences, 2019, 9(20): 4209. doi: 10.3390/app9204209
    [18] CHEN Wangcai, LIU Wenbo and LI Kaiyu. Rail crack recognition based on adaptive weighting multi-classifier fusion decision[J]. Measurement, 2018, 123: 102–114. doi: 10.1016/j.measurement.2018.03.059
    [19] ZHANG M M, CHOI J, DANIILIDIS K, et al. VAIS: A dataset for recognizing maritime imagery in the visible and infrared spectrums[C]. The 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Boston, USA, 2015: 10–16. doi: 10.1109/CVPRW.2015.7301291.
    [20] DING Jun, CHEN Bo, LIU Hongwei, et al. Convolutional neural network with data augmentation for SAR target recognition[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(3): 364–368. doi: 10.1109/LGRS.2015.2513754
    [21] RAINEY K, REEDER J D, and CORELLI A G. Convolution neural networks for ship type recognition[C]. SPIE 9844, Automatic Target Recognition XXVI, Baltimore, USA, 2016: 984409. doi: 10.1117/12.2229366.
    [22] LI Zhenzhen, ZHAO Baojun, TANG Linbo, et al. Ship classification based on convolutional neural networks[J]. The Journal of Engineering, 2019, 2019(21): 7343–7346. doi: 10.1049/joe.2019.0422
  • 加载中
图(5) / 表(8)
计量
  • 文章访问数:  1910
  • HTML全文浏览量:  610
  • PDF下载量:  183
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-11
  • 修回日期:  2020-10-28
  • 网络出版日期:  2020-11-16
  • 刊出日期:  2021-05-18

目录

    /

    返回文章
    返回