高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

融合双流三维卷积和注意力机制的动态手势识别

王粉花 张强 黄超 张苒

王粉花, 张强, 黄超, 张苒. 融合双流三维卷积和注意力机制的动态手势识别[J]. 电子与信息学报, 2021, 43(5): 1389-1396. doi: 10.11999/JEIT200065
引用本文: 王粉花, 张强, 黄超, 张苒. 融合双流三维卷积和注意力机制的动态手势识别[J]. 电子与信息学报, 2021, 43(5): 1389-1396. doi: 10.11999/JEIT200065
Fenhua WANG, Qiang ZHANG, Chao HUANG, Ran ZHANG. Dynamic Gesture Recognition Combining Two-stream 3D Convolution with Attention Mechanisms[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1389-1396. doi: 10.11999/JEIT200065
Citation: Fenhua WANG, Qiang ZHANG, Chao HUANG, Ran ZHANG. Dynamic Gesture Recognition Combining Two-stream 3D Convolution with Attention Mechanisms[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1389-1396. doi: 10.11999/JEIT200065

融合双流三维卷积和注意力机制的动态手势识别

doi: 10.11999/JEIT200065
基金项目: 国家重点研发计划重点专项(2017YFB1400101-01),北京科技大学中央高校基本科研业务费专项资金(FRF-BD-19-002A)
详细信息
    作者简介:

    王粉花:女,1971年生,博士,副教授,硕士生导师,研究方向为模式识别与智能信息处理

    张强:男,1994年生,硕士生,研究方向为图像处理与手势识别

    黄超:男,1993年生,硕士生,研究方向为图像处理

    通讯作者:

    王粉花 wangfenhua@ustb.edu.cn

  • 中图分类号: TP183

Dynamic Gesture Recognition Combining Two-stream 3D Convolution with Attention Mechanisms

Funds: The National Key Research and Development Project of China (2017YFB1400101-01), The Fundamental Research Funds for the Central Universities (FRF-BD-19-002A)
  • 摘要: 得益于计算机硬件以及计算能力的进步,自然、简单的动态手势识别在人机交互方面备受关注。针对人机交互中对动态手势识别准确率的要求,该文提出一种融合双流3维卷积神经网络(I3D)和注意力机制(CBAM)的动态手势识别方法CBAM-I3D。并且改进了I3D网络模型的相关参数和结构,为了提高模型的收敛速度和稳定性,使用了批量归一化(BN)技术优化网络,使优化后网络的训练时间缩短。同时与多种双流3D卷积方法在开源中国手语数据集(CSL)上进行了实验对比,实验结果表明,该文所提方法能很好地识别动态手势,识别率达到了90.76%,高于其他动态手势识别方法,验证了所提方法的有效性和可行性。
  • 图  1  I3D网络

    图  2  注意力机制CBAM模型

    图  3  CBAM-I3D网络

    图  4  双流CBAM-I3D网络

    图  5  RGB图像处理前后的对比

    表  1  本文方法与其他方法在CSL数据集上的实验结果对比

    网络结构Top1准确率(%)网络训练时间(h)平均检测时间(s)
    C3D(RGB)70.5335.152.05
    CBAM-C3D(RGB)71.7736.262.10
    C3D(RGB+Optical)71.2875.453.39
    CBAM-C3D(RGB+Optical)72.8676.154.01
    MFnet(RGB)73.6112.140.15
    CABM-MFnet(RGB)74.2513.280.17
    MFnet(RGB+Optical)74.6529.200.28
    CABM-MFnet(RGB+Optical)76.1930.080.31
    3D-ResNet(RGB)79.5224.420.58
    CBAM-3D-ResNet(RGB)82.9025.430.61
    3D-ResNet(RGB+Optical)83.9655.151.02
    CBAM-3D-ResNet(RGB+Optical)85.2856.201.08
    I3D(RGB)84.5620.290.41
    CBAM-I3D(RGB)86.0021.310.42
    I3D(RGB+Optical)88.1846.520.75
    CBAM-I3D(RGB+Optical)90.7647.280.81
    下载: 导出CSV
  • [1] TAKAHASHI T and KISHINO F. A hand gesture recognition method and its application[J]. Systems and Computers in Japan, 1992, 23(3): 38–48. doi: 10.1002/scj.4690230304
    [2] BANSAL B. Gesture recognition: A survey[J]. International Journal of Computer Applications, 2016, 139(2): 8–10. doi: 10.5120/ijca2016909103
    [3] 张淑军, 张群, 李辉. 基于深度学习的手语识别综述[J]. 电子与信息学报, 2020, 42(4): 1021–1032. doi: 10.11999/JEIT190416

    ZHANG Shujun, ZHANG Qun, and LI Hui. Review of sign language recognition based on deep learning[J]. Journal of Electronics &Information Technology, 2020, 42(4): 1021–1032. doi: 10.11999/JEIT190416
    [4] PARCHETA Z and MARTÍNEZ-HINAREJOS C D. Sign language gesture recognition using hmm[C]. The 8th Iberian Conference on Pattern Recognition and Image Analysis, Faro, Portugal, 2017: 419–426. doi: 10.1007/978-3-319-58838-4_46.
    [5] PU Junfu, ZHOU Wengang, ZHANG Jihai, et al. Sign language recognition based on trajectory modeling with HMMs[C]. The 22nd International Conference on Multimedia Modeling, Miami, USA, 2016: 686–697. doi: 10.1007/978-3-319-27671-7_58.
    [6] SAMANTA O, ROY A, PARUI S K, et al. An HMM framework based on spherical-linear features for online cursive handwriting recognition[J]. Information Sciences, 2018, 441: 133–151. doi: 10.1016/j.ins.2018.02.004
    [7] MASOOD S, SRIVASTAVA A, THUWAL H C, et al. Real-time sign language gesture (word) recognition from video sequences using CNN and RNN[M]. BHATEJA V, COELLO C A C, SATAPATHY S C, et al. Intelligent Engineering Informatics. Singapore: Springer, 2018: 623–632. doi: 10.1007/978-981-10-7566-7_63.
    [8] DONAHUE J, JIA Yangqing, VINYALS O, et al. DeCAF: A deep convolutional activation feature for generic visual recognition[C]. The 31st International Conference on International Conference on Machine Learning, Beijing, China, 2014: I-647–I-655.
    [9] TRAN D, BOURDEV L, FERGUS R, et al. Learning spatiotemporal features with 3d convolutional networks[C]. 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 4489–4497. doi: 10.1109/ICCV.2015.510.
    [10] CHEN Yunpeng, KALANTIDIS Y, LI Jianshu, et al. Multi-fiber networks for video recognition[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 364–380.
    [11] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
    [12] HUANG Jie, ZHOU Wengang, LI Houqiang, et al. Sign language recognition using 3D convolutional neural networks[C]. 2015 IEEE International Conference on Multimedia and Expo (ICME), Turin, Italy, 2015: 1–6. doi: 10.1109/ICME.2015.7177428.
    [13] SIMONYAN K and ZISSERMAN A. Two-stream convolutional networks for action recognition in videos[C]. The 27th International Conference on Neural Information Processing Systems, Montreal, Canada, 2014: 568–576.
    [14] BAKER S, SCHARSTEIN D, LEWIS J P, et al. A database and evaluation methodology for optical flow[J]. International Journal of Computer Vision, 2011, 92(1): 1–31. doi: 10.1007/s11263-010-0390-2
    [15] CAO Zhe, SIMON T, WEI S E, et al. Realtime multi-person 2D pose estimation using part affinity fields[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 1302–1310. doi: 10.1109/CVPR.2017.143.
    [16] CARREIRA J and ZISSERMAN A. Quo Vadis, action recognition? A new model and the kinetics dataset[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 4724–4733. doi: 10.1109/CVPR.2017.502.
    [17] WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 3–19.
    [18] HUANG Jie, ZHOU Wengang, ZHANG Qilin, et al. Video-based sign language recognition without temporal segmentation[C]. The 32nd AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, USA, 2018: 2257–2264.
    [19] HU Jie, SHEN Li, and SUN Gang. Squeeze-and-excitation networks[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 2011–2023. doi: 10.1109/CVPR.2018.00745.
    [20] IOFFE S and SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]. The 32nd International Conference on Machine Learning, Lille, France, 2015: 448–456.
    [21] 刘天亮, 谯庆伟, 万俊伟, 等. 融合空间-时间双网络流和视觉注意的人体行为识别[J]. 电子与信息学报, 2018, 40(10): 2395–2401. doi: 10.11999/JEIT171116

    LIU Tianliang, QIAO Qingwei, WAN Junwei, et al. Human action recognition via spatio-temporal dual network flow and visual attention fusion[J]. Journal of Electronics &Information Technology, 2018, 40(10): 2395–2401. doi: 10.11999/JEIT171116
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  2565
  • HTML全文浏览量:  1141
  • PDF下载量:  241
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-16
  • 修回日期:  2020-12-06
  • 网络出版日期:  2020-12-18
  • 刊出日期:  2021-05-18

目录

    /

    返回文章
    返回