高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Sigmoid框架的非负最小均方算法

樊宽刚 邱海云

樊宽刚, 邱海云. 基于Sigmoid框架的非负最小均方算法[J]. 电子与信息学报, 2021, 43(2): 349-355. doi: 10.11999/JEIT200018
引用本文: 樊宽刚, 邱海云. 基于Sigmoid框架的非负最小均方算法[J]. 电子与信息学报, 2021, 43(2): 349-355. doi: 10.11999/JEIT200018
Kuan’gang FAN, Haiyun QIU. Robust Nonnegative Least Mean Square Algorithm Based on Sigmoid Framework[J]. Journal of Electronics & Information Technology, 2021, 43(2): 349-355. doi: 10.11999/JEIT200018
Citation: Kuan’gang FAN, Haiyun QIU. Robust Nonnegative Least Mean Square Algorithm Based on Sigmoid Framework[J]. Journal of Electronics & Information Technology, 2021, 43(2): 349-355. doi: 10.11999/JEIT200018

基于Sigmoid框架的非负最小均方算法

doi: 10.11999/JEIT200018
基金项目: 国家自然科学基金(61763018),江西省“03专项及5G项目”(20193ABC03A058),江西省教育厅重点项目 (GJJ170493),江西理工大学清江青年英才支持计划
详细信息
    作者简介:

    樊宽刚:男,1981年生,博士后,副教授,研究方向为智能仪器设计、智能轨道交通、汽车电磁兼容等

    邱海云:男,1994年生,硕士生,研究方向为自适应信号处理

    通讯作者:

    樊宽刚 kuangangfriend@163.com

  • 中图分类号: TN911.7

Robust Nonnegative Least Mean Square Algorithm Based on Sigmoid Framework

Funds: The National Natural Science Foundation of China (61763018), The Special Project and 5G Program of Jiangxi Province (20193ABC03A058), The Education Department of Jiangxi Province (GJJ170493), The Program of Qingjiang Excellent Young Talents, Jiangxi University of Science and Technology
  • 摘要:

    脉冲噪声会导致非负算法在迭代过程中存在过大的误差值,进而破坏算法的稳定性使其性能严重下降,对此该文提出一种基于Sigmoid框架的非负最小均方算法(SNNLMS)。该算法将传统的非负代价函数嵌入Sigmoid框架中得到新的代价函数,新的代价函数具有抑制脉冲噪声影响的特性。此外,为了增强SNNLMS算法在稀疏系统识别问题上的鲁棒性,该文还提出基于反比例函数的反比例Sigmoid非负最小均方算法(IP-SNNLMS)。仿真结果表明SNNLMS算法有效地解决了脉冲噪声造成的失调问题;IP-SNNLMS增强了算法鲁棒性,改进了算法在稀疏系统识别问题中收敛速率上的缺陷。

  • 图  1  代价函数$J({{w}})$的曲线

    图  2  不同参数下代价函数$ {J_{{S_k}}}({{w}})$的曲线

    图  3  不同参数下两种算法的${g_j}({{w}}(k))$项测试曲线

    图  4  $p$=0时4种算法的性能曲线

    图  5  $p$=0.1时4种算法的性能曲线

    图  6  $p$=0.5时4种算法的性能曲线

    图  7  非脉冲噪声下稀疏系统中两类算法性能曲线

    图  8  脉冲噪声下稀疏系统中两类算法性能曲线

    图  9  不同脉冲噪声强度下算法性能

    图  10  不同高斯噪声强度下算法性能

    图  11  SNNLMS算法不同$\beta $下稳态精度曲线

    图  12  IP-SNNLMS算法不同$\gamma $下稳态精度曲线

  • SLOCK D T M. On the convergence behavior of the LMS and the normalized LMS algorithms[J]. IEEE Transactions on Signal Processing, 1993, 41(9): 2811–2825. doi: 10.1109/78.236504
    KANG B, YOO J, and PARK P. Bias-compensated normalised LMS algorithm with noisy input[J]. Electronics Letters, 2013, 49(8): 538–539. doi: 10.1049/el.2013.0246
    JUNG S M and PARK P G. Normalised least-mean-square algorithm for adaptive filtering of impulsive measurement noises and noisy inputs[J]. Electronics Letters, 2013, 49(20): 1270–1272. doi: 10.1049/el.2013.2482
    WANG Wenyuan, ZHAO Haiquan, LU Lu, et al. Bias-compensated constrained least mean square adaptive filter algorithm for noisy input and its performance analysis[J]. Digital Signal Processing, 2019, 84: 26–37. doi: 10.1016/j.dsp.2018.07.021
    LIU Weifeng, POKHAREL P P, and PRINCIPE J C. The kernel least-mean-square algorithm[J]. IEEE Transactions on Signal Processing, 2008, 56(2): 543–554. doi: 10.1109/TSP.2007.907881
    LIU Yuqi, SUN Chao, and JIANG Shouda. A reduced Gaussian kernel Least-Mean-Square algorithm for nonlinear adaptive signal processing[J]. Circuits, Systems, and Signal Processing, 2019, 38(1): 371–394. doi: 10.1007/s00034-018-0862-0
    邱天爽, 杨志春, 李小兵, 等. α稳定分布下的加权平均最小p-范数算法[J]. 电子与信息学报, 2007, 29(2): 410–413.

    QIU Tianshuang, YANG Zhichun, LI Xiaobing, et al. A weighted average least p-norm algorithm under alpha stable noise conditions[J]. Journal of Electronics &Information Technology, 2007, 29(2): 410–413.
    李群生, 赵剡, 寇磊, 等. 一种基于多尺度核学习的仿射投影滤波算法[J]. 电子与信息学报, 2020, 42(4): 924–931. doi: 10.11999/JEIT190023

    LI Qunsheng, ZHAO Yan, KOU Lei, et al. An affine projection algorithm with multi-scale kernels learning[J]. Journal of Electronics &Information Technology, 2020, 42(4): 924–931. doi: 10.11999/JEIT190023
    LIN C J. On the convergence of multiplicative update algorithms for nonnegative matrix factorization[J]. IEEE Transactions on Neural Networks, 2007, 18(6): 1589–1596. doi: 10.1109/TNN.2007.895831
    BRO R and DE JONG S. A fast non-negativity-constrained least squares algorithm[J]. Journal of Chemometrics, 1997, 11(5): 393–401. doi: 10.1002/(SICI)1099-128X(199709/10)11:5<393::AID-CEM483>3.0.CO;2-L
    CHEN Jie, RICHARD C, BERMUDEZ J C M, et al. Nonnegative least-mean-square algorithm[J]. IEEE Transactions on Signal Processing, 2011, 59(11): 5225–5235. doi: 10.1109/TSP.2011.2162508
    CHEN Jie, RICHARD C, BERMUDEZ J C M, et al. Variants of non-negative least-mean-square algorithm and convergence analysis[J]. IEEE Transactions on Signal Processing, 2014, 62(15): 3990–4005. doi: 10.1109/TSP.2014.2332440
    CHEN Jie, BERMUDEZ J C M, and RICHARD C. Steady-state performance of non-negative least-mean-square algorithm and its variants[J]. IEEE Signal Processing Letters, 2014, 21(8): 928–932. doi: 10.1109/LSP.2014.2320944
    CHEN Jie, RICHARD C, and BERMUDEZ J C M. Reweighted nonnegative least-mean-square algorithm[J]. Signal Processing, 2016, 128: 131–141. doi: 10.1016/j.sigpro.2016.03.017
    SHOKROLAHI S M and JAHROMI M N. Logarithmic reweighting nonnegative least mean square algorithm[J]. Signal, Image and Video Processing, 2018, 12(1): 51–57. doi: 10.1007/s11760-017-1129-0
    CHEN Badong, XING Lei, ZHAO Haiquan, et al. Generalized correntropy for robust adaptive filtering[J]. IEEE Transactions on Signal Processing, 2016, 64(13): 3376–3387. doi: 10.1109/TSP.2016.2539127
    SONG Insun, PARK P, and NEWCOMB R W. A normalized least mean squares algorithm with a step-size scaler against impulsive measurement noise[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2013, 60(7): 442–445. doi: 10.1109/TCSII.2013.2258266
    FAN Kuan’gang, QIU Haiyun, PEI Chunyang, et al. Robust non-negative least mean square algorithm based on step-size scaler against impulsive noise[J]. Advances in Difference Equations, 2020(1): 199. doi: 10.1186/s13662-020-02654-5
    HUANG Fuyi, ZHANG Jiashu, and ZHANG Sheng. A family of robust adaptive filtering algorithms based on sigmoid cost[J]. Signal Processing, 2018, 149: 179–192. doi: 10.1016/j.sigpro.2018.03.013
    XIONG Kui and WANG Shiyuan. Robust least mean logarithmic square adaptive filtering algorithms[J]. Journal of the Franklin Institute, 2019, 356(1): 654–674. doi: 10.1016/j.jfranklin.2018.10.019
    代振, 王平波, 卫红凯. 非高斯背景下基于Sigmoid函数的信号检测[J]. 电子与信息学报, 2019, 41(12): 2945–2950. doi: 10.11999/JEIT190012

    DAI Zhen, WANG Pingbo, and WEI Hongkai. Signal detection based on Sigmoid function in non-Gaussian noise[J]. Journal of Electronics &Information Technology, 2019, 41(12): 2945–2950. doi: 10.11999/JEIT190012
  • 加载中
图(12)
计量
  • 文章访问数:  1544
  • HTML全文浏览量:  523
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-03
  • 修回日期:  2020-08-06
  • 网络出版日期:  2020-08-21
  • 刊出日期:  2021-02-23

目录

    /

    返回文章
    返回