高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混合高斯噪声背景下基于多目标优化的节点选择方法

闫青丽 陈建峰

闫青丽, 陈建峰. 混合高斯噪声背景下基于多目标优化的节点选择方法[J]. 电子与信息学报, 2021, 43(2): 341-348. doi: 10.11999/JEIT191031
引用本文: 闫青丽, 陈建峰. 混合高斯噪声背景下基于多目标优化的节点选择方法[J]. 电子与信息学报, 2021, 43(2): 341-348. doi: 10.11999/JEIT191031
Qingli YAN, Jianfeng CHEN. Sensor Selection Method Based on Multi-objective Optimal Optimization for Mixture Gaussian Noise[J]. Journal of Electronics & Information Technology, 2021, 43(2): 341-348. doi: 10.11999/JEIT191031
Citation: Qingli YAN, Jianfeng CHEN. Sensor Selection Method Based on Multi-objective Optimal Optimization for Mixture Gaussian Noise[J]. Journal of Electronics & Information Technology, 2021, 43(2): 341-348. doi: 10.11999/JEIT191031

混合高斯噪声背景下基于多目标优化的节点选择方法

doi: 10.11999/JEIT191031
基金项目: 国家自然科学基金-浙江两化融合联合基金(U1609204)
详细信息
    作者简介:

    闫青丽:女,1990年生,讲师,研究方向为信号与信息处理、无线传感器网络数据融合、目标定位与跟踪

    陈建峰:男,1972年生,教授,研究方向为阵列信号处理、水下信号处理、声源定位、无线传感器网络信息融合等

    通讯作者:

    闫青丽 gongchyy@163.com

  • 中图分类号: TN911

Sensor Selection Method Based on Multi-objective Optimal Optimization for Mixture Gaussian Noise

Funds: The National Natural Science Foundation of China-Zhejiang Joint Fund for the Integration of Industrialization and Information (U1609204)
  • 摘要:

    为解决非高斯噪声背景下,基于贝叶斯Fisher信息矩阵和基于互信息的节点选择不一致的问题,该文提出一种基于多目标优化的节点选择方法。推导出节点噪声为混合高斯分布时的贝叶斯Fisher信息矩阵和互信息,将节点个数、选择的节点对应的Fisher信息矩阵和互信息共同作为优化的目标函数。提出利用基于分解的多目标优化方法寻找Pareto最优解,并采用与理想解相似的偏好排序技术(TOPSIS)从所有Pareto最优解中选择最终的节点选择方案。仿真实验结果表明,基于多目标优化的节点选择方法选择的节点具有更优更稳健的定位精度。

  • 图  1  信息因子与${\sigma _2}/{\sigma _1}$的关系

    图  2  互信息与${\sigma _2}/{\sigma _1}$的关系

    图  3  25个传感器节点布局

    图  4  基于MOEA/D和NSGA-II的Pareto解

    图  5  不同声源位置时的节点选择结果

    图  6  TOPSIS中不同权值时选择的节点个数

    图  7  不同目标位置的平均RMSE

    图  8  ${\sigma _2}$逐渐增大时第6个声源和第10个声源对应的定位误差

  • SALVATI D, DRIOLI C, and FORESTI G L. Exploiting CNNs for improving acoustic source localization in noisy and reverberant conditions[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2018, 2(2): 103–116. doi: 10.1109/TETCI.2017.2775237
    闫青丽, 陈建峰. 风场环境中声速修正的分布式声源定位算法[J]. 声学学报, 2017, 42(4): 421–426. doi: 10.15949/j.cnki.0371-0025.2017.04.005

    YAN Qingli and CHEN Jianfeng. Distributed sound source localization algorithm for sound velocity calibration in windy environment[J]. Acta Acustica, 2017, 42(4): 421–426. doi: 10.15949/j.cnki.0371-0025.2017.04.005
    刘坤, 吴建新, 甄杰, 等. 基于阵列天线和稀疏贝叶斯学习的室内定位方法[J]. 电子与信息学报, 2020, 42(5): 1158–1164. doi: 10.11999/JEIT190314

    LIU Kun, WU Jianxin, ZHEN Jie, et al. Indoor localization algorithm based on array antenna and sparse bayesian learning[J]. Journal of Electronics &Information Technology, 2020, 42(5): 1158–1164. doi: 10.11999/JEIT190314
    ERTIN E, FISHER J W, and POTTE L C. Maximum mutual information principle for dynamic sensor query problems[C]. The 2nd International Workshop on Information Processing in Sensor Networks, Palo Alto, USA, 2003: 405–416. doi: 10.1007/3-540-36978-3_27.
    WANG Hanbiao, YAO K, and ESTRIN D. Information-theoretic approaches for sensor selection and placement in sensor networks for target localization and tracking[J]. Journal of Communications and Networks, 2005, 7(4): 438–449. doi: 10.1109/jcn.2005.6387986
    ZHAO Feng, SHIN J, and REICH J. Information-driven dynamic sensor collaboration[J]. IEEE Signal Processing Magazine, 2002, 19(2): 61–72. doi: 10.1109/79.985685
    KAPLAN L. Global node selection for localization in a distributed sensor network[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1): 113–135. doi: 10.1109/TAES.2006.1603409
    KAPLAN L. Local node selection for localization in a distributed sensor network[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1): 136–146. doi: 10.1109/TAES.2006.1603410
    CHEPURI S P and LEUS G. Sparsity-promoting sensor selection for non-linear measurement models[J]. IEEE Transactions on Signal Processing, 2015, 63(3): 684–698. doi: 10.1109/tsp.2014.2379662
    LIU Sijia, CHEPURI S P, FARDAD M, et al. Sensor selection for estimation with correlated measurement noise[J]. IEEE Transactions on Signal Processing, 2016, 64(13): 3509–3522. doi: 10.1109/TSP.2016.2550005
    郝本建, 王林林, 李赞, 等. 面向TDOA被动定位的定位节点选择方法[J]. 电子与信息学报, 2019, 41(2): 213–219. doi: 10.11999/JEIT180293

    HAO Benjian, WANG Linlin, LI Zan, et al. Sensor selection method for TDOA passive localization[J]. Journal of Electronics &Information Technology, 2019, 41(2): 213–219. doi: 10.11999/JEIT180293
    YANG Mengna, JACKSON D R, CHEN Ji, et al. A TDOA localization method for nonline-of-sight scenarios[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(4): 2666–2676. doi: 10.1109/TAP.2019.2891403
    NGUYEN N H, DOĞANÇAY K, and KURUOĞLU E E. An iteratively reweighted instrumental-variable estimator for robust 3-D AOA localization in impulsive noise[J]. IEEE Transactions on Signal Processing, 2019, 67(18): 4795–4808. doi: 10.1109/TSP.2019.2931210
    YAN Qingli, CHEN Jianfeng, OTTOY G, et al. Robust AOA based acoustic source localization method with unreliable measurements[J]. Signal Processing, 2018, 152: 13–21. doi: 10.1016/j.sigpro.2018.05.010
    CAO Nianxia, CHOI S, MASAZADE E, et al. Sensor selection for target tracking in wireless sensor networks with uncertainty[J]. IEEE Transactions on Signal Processing, 2016, 64(20): 5191–5204. doi: 10.1109/TSP.2016.2595500
    ZHAO Yue, LI Zan, HAO Benjian, et al. Sensor selection for TDOA-based localization in wireless sensor networks with non-line-of-sight condition[J]. IEEE Transactions on Vehicular Technology, 2019, 68(10): 9935–9950. doi: 10.1109/TVT.2019.2936110
    GIL P, MARTINS H, and JANUÁRIO F. Outliers detection methods in wireless sensor networks[J]. Artificial Intelligence Review, 2019, 52(4): 2411–2436. doi: 10.1007/s10462-018-9618-2
    ZHANG Jiangfan, WANG Xiaodong, BLUM R S, et al. Attack detection in sensor network target localization systems with quantized data[J]. IEEE Transactions on Signal Processing, 2018, 66(8): 2070–2085. doi: 10.1109/TSP.2018.2802459
    ZHANG Qingfu and LI Hui. MOEA/D: A multiobjective evolutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6): 712–731. doi: 10.1109/TEVC.2007.892759
    SHIH H S, SHYUR H J, and LEE E S. An extension of TOPSIS for group decision making[J]. Mathematical and Computer Modelling, 2007, 45(7/8): 801–813. doi: 10.1016/j.mcm.2006.03.023
  • 加载中
图(8)
计量
  • 文章访问数:  1034
  • HTML全文浏览量:  401
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-24
  • 修回日期:  2020-10-21
  • 网络出版日期:  2020-10-23
  • 刊出日期:  2021-02-23

目录

    /

    返回文章
    返回