高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于动态有序矩阵的外辐射源雷达CFAR算法

饶云华 周健康 万显荣 龚子平 柯亨玉

饶云华, 周健康, 万显荣, 龚子平, 柯亨玉. 基于动态有序矩阵的外辐射源雷达CFAR算法[J]. 电子与信息学报, 2021, 43(4): 1154-1161. doi: 10.11999/JEIT191024
引用本文: 饶云华, 周健康, 万显荣, 龚子平, 柯亨玉. 基于动态有序矩阵的外辐射源雷达CFAR算法[J]. 电子与信息学报, 2021, 43(4): 1154-1161. doi: 10.11999/JEIT191024
Yunhua RAO, Jiankang ZHOU, Xianrong WAN, Ziping GONG, Hengyu KE. CFAR for Passive Radar Based on Dynamic Ordered Matrix[J]. Journal of Electronics & Information Technology, 2021, 43(4): 1154-1161. doi: 10.11999/JEIT191024
Citation: Yunhua RAO, Jiankang ZHOU, Xianrong WAN, Ziping GONG, Hengyu KE. CFAR for Passive Radar Based on Dynamic Ordered Matrix[J]. Journal of Electronics & Information Technology, 2021, 43(4): 1154-1161. doi: 10.11999/JEIT191024

基于动态有序矩阵的外辐射源雷达CFAR算法

doi: 10.11999/JEIT191024
基金项目: 国家自然科学基金(U1933135, 61271400),国家重点研发计划(2016YFB0502403),湖北省技术创新专项重大项目(2016AAA017),深圳市科技计划项目(JCYJ20170818112037398)
详细信息
    作者简介:

    饶云华:男,1972年生,副教授,研究方向为新体制雷达、雷达系统设计、无线通信网等

    周健康:男,1993年生,硕士生,研究方向为雷达电磁环境辨识、恒虚警检测

    万显荣:男,1975年生,教授,研究方向为无源雷达、超视距雷 达、新体制雷达系统与雷达信号处理等

    龚子平:男,1977年生,讲师,研究方向为电波传播与无线电海洋遥感等

    柯亨玉:男,1957年生,教授,研究方向为电磁场理论、高频雷达海洋遥感技术

    通讯作者:

    饶云华 ryh@whu.edu.cn

  • 中图分类号: TN957.51

CFAR for Passive Radar Based on Dynamic Ordered Matrix

Funds: The National Natural Science Foundation of China (U1933135,61271400), The National Key Research and Development Project (2016YFB0502403), The Hubei Province Technology Innovation Special Major Project (2016AAA017), The Shenzhen Science and Technology Project (JCYJ20170818112037398)
  • 摘要: 外辐射源雷达采用不可控的第三方辐射源,其电磁传播条件复杂,尤其是在低空目标探测中,检测性能极大地受到杂波特性的影响,使得传统恒虚警算法性能明显下降。为了改善检测性能,该文提出一种基于雷达杂波空间划分的动态有序矩阵恒虚警检测算法(DOM-CFAR)。该算法将杂波空间从距离和多普勒维进行划分,构造为有序矩阵,再根据背景杂波变化进行动态极值替换、提取杂波估计中值用以计算检测阈值,从而使得检测算法阈值可动态适应杂波功率变化。仿真和实测结果表明,该算法可以在均匀杂波、多目标和杂波边缘等复杂情况下保持稳定的检测性能。
  • 图  1  DOM-CFAR算法实现流程图

    图  2  均值等高线

    图  3  方差等高线

    图  4  均匀杂波下迭代10次

    图  5  均匀杂波下迭代200次

    图  6  均匀杂波下迭代1000次

    图  7  多目标下迭代10次

    图  8  多目标下迭代200次

    图  9  杂波边缘下迭代10次

    图  10  杂波边缘下迭代200次

    图  11  目标干扰对性能的影响

    图  12  雷达探测环境

    图  13  实测RD谱

    表  1  算法复杂度及耗时比较

    算法名称空间复杂度运算复杂度串行耗时(s)并行耗时(s)
    CA1MN51.3372.776
    SO1MN73.5883.260
    GO1MN75.1763.289
    OS1MNlgN449.6517.632
    CMMM0.0870.073
    DOMMKMK88.4905.560
    下载: 导出CSV

    表  2  实测的检测概率与虚警概率

    CFARCASOGOOSCM迭代次数DOM迭代次数
    1010020040010100200400
    检测概率(%)72.451.378.886.81.362.176.493.088.098.398.198.2
    虚警概率(10–5)2.689.581.9322.060.132.934.254.4520.935.082.851.28
    下载: 导出CSV
  • FINN H M. Adaptive detection in clutter[C]. The 5th Symposium on Adaptive Processes, New Jersey, USA, 1966: 562–567. doi: 10.1109/SAP.1966.271149.
    WANG Weijiang, WANG Runyi, JIANG Rongkun, et al. Modified reference window for two-dimensional CFAR in radar target detection[J]. The Journal of Engineering, 2019, 2019(21): 7924–7927. doi: 10.1049/joe.2019.0687
    TRUNK G V. Range resolution of targets using automatic detectors[J]. IEEE Transactions on Aerospace and Electronic Systems, 1978, AES-14(5): 750–755. doi: 10.1109/TAES.1978.308625
    HANSEN V G and SAWYERS J H. Detectability loss due to "greatest of" selection in a cell-averaging CFAR[J]. IEEE Transactions on Aerospace and Electronic Systems, 1980, 16(1): 115–118. doi: 10.1109/TAES.1980.308885
    SMITH M E and VARSHNEY P K. Intelligent CFAR processor based on data variability[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(3): 837–847. doi: 10.1109/7.869503
    WANG Leiou, WANG Donghui, and HAO Chengpeng. Intelligent CFAR detector based on support vector machine[J]. IEEE Access, 2017, 5: 26965–26972. doi: 10.1109/ACCESS.2017.2774262
    CARRETERO M V I, HARMANNY R I A, and TROMMEL R P. Smart-CFAR, A machine learning approach to floating level detection in radar[C]. The 16th European Radar Conference (EuRAD), Paris, France, 2019: 161–164.
    ROHLING H. Radar CFAR thresholding in clutter and multiple target situations[J]. IEEE Transactions on Aerospace and Electronic Systems, 1983, AES-19(4): 608–621. doi: 10.1109/TAES.1983.309350
    VILLAR S A, DE PAULA M, SOLARI F J, et al. A framework for acoustic segmentation using order statistic-constant false alarm rate in two dimensions from sidescan sonar data[J]. IEEE Journal of Oceanic Engineering, 2018, 43(3): 735–748. doi: 10.1109/JOE.2017.2721058
    柳向, 李东生, 胡瑞. 基于有序统计类恒虚警检测的脉冲压缩雷达移频特征消隐多载波干扰研究[J]. 兵工学报, 2017, 38(11): 2134–2142. doi: 10.3969/j.issn.1000-1093.2017.11.008

    LIU Xiang, LI Dongsheng, and HU Rui. Research on blanking shift-frequency-multi-carrier jamming against pulse-compression radar based on OS-CFAR[J]. Acta Armamentarii, 2017, 38(11): 2134–2142. doi: 10.3969/j.issn.1000-1093.2017.11.008
    LIN C H, LIN Y C, BAI Yue, et al. DL-CFAR: A Novel CFAR target detection method based on deep learning[C]. The 90th IEEE Vehicular Technology Conference (VTC2019-Fall), Honolulu, USA, 2019: 1–6. doi: 10.1109/VTCFall.2019.8891420.
    JIN Erwen, YAN Danqing, ZHANG Zhongjin, et al. FOD Detection on Airport Runway with Clutter Map CFAR Plane Technique[M]. LIANG Qilian, WANG Wei, MU Jiasong, et al. Communications, Signal Processing, and Systems. New York: Springer, 2012: 335–342. doi: 10.1007/978-1-4614-5803-6_34.
    AKÇAPINAR K and BAYKUT S. CM-CFAR parameter learning based square-law detector for foreign object debris radar[C]. The 48th European Microwave Conference, Madrid, Spain, 2018: 421–424. doi: 10.23919/EuMC.2018.8541714.
    TAO Ding, ANFINSEN S N, and BREKKE C. Robust CFAR detector based on truncated statistics in multiple-target situations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(1): 117–134. doi: 10.1109/TGRS.2015.2451311
    WU Fengtao, WU Nan, and WU Maosong. A fast and slow time combined CFAR detection algorithm used in through-the-wall radar[C]. 2017 IEEE Electrical Design of Advanced Packaging and Systems Symposium, Haining, China, 2017: 1–3. doi: 10.1109/EDAPS.2017.8276955.
    LAYEGHY S, ODABAEE M, KHLIF M S, et al. A time frequency approach to CFAR detection[C]. 2011 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), Bilbao, Spain, 2011: 230–234. doi: 10.1109/ISSPIT.2011.6151565.
    代振, 王平波, 卫红凯. 非高斯背景下基于Sigmoid函数的信号检测[J]. 电子与信息学报, 2019, 41(12): 2945–2950. doi: 10.11999/JEIT190012

    DAI Zhen, WANG Pingbo, and WEI Hongkai. Signal detection based on sigmoid function in Non-Gaussian noise[J]. Journal of Electronics &Information Technology, 2019, 41(12): 2945–2950. doi: 10.11999/JEIT190012
    NARASIMHAN R S, RAMAKRISHNAN K R, and VENGADARAJAN A. Robust variability index CFAR for non-homogeneous background[J]. IET Radar, Sonar & Navigation, 2019, 13(10): 1775–1786. doi: 10.1049/iet-rsn.2018.5435
    ZHANG Xin, ZHANG Renli, SHENG Weixing, et al. Intelligent CFAR detector for non-homogeneous weibull clutter environment based on skewness[C]. 2018 IEEE Radar Conference (RadarConf18), Oklahoma, USA, 2018: 322–326. doi: 10.1109/RADAR.2018.8378578.
    赵文静, 刘畅, 刘文龙, 等. K分布海杂波背景下基于最大特征值的雷达信号检测算法[J]. 电子与信息学报, 2018, 40(9): 2235–2241. doi: 10.11999/JEIT171092

    ZHAO Wenjing, LIU Chang, LIU Wenlong, et al. Maximum eigenvalue based radar signal detection method for K distribution sea clutter environment[J]. Journal of Electronics &Information Technology, 2018, 40(9): 2235–2241. doi: 10.11999/JEIT171092
    万显荣. 基于低频段数字广播电视信号的外辐射源雷达发展现状与趋势[J]. 雷达学报, 2012, 1(2): 109–123. doi: 10.3724/SP.J.1300.2012.20027

    WAN Xianrong. An overview on development of passive radar based on the low frequency band digital broadcasting and TV signals[J]. Journal of Radars, 2012, 1(2): 109–123. doi: 10.3724/SP.J.1300.2012.20027
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  1248
  • HTML全文浏览量:  594
  • PDF下载量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-23
  • 修回日期:  2020-10-20
  • 网络出版日期:  2020-12-08
  • 刊出日期:  2021-04-20

目录

    /

    返回文章
    返回