高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ADS-B攻击数据弹性恢复方法

李腾耀 王布宏 尚福特 田继伟 曹堃锐

李腾耀, 王布宏, 尚福特, 田继伟, 曹堃锐. ADS-B攻击数据弹性恢复方法[J]. 电子与信息学报, 2020, 42(10): 2365-2373. doi: 10.11999/JEIT191020
引用本文: 李腾耀, 王布宏, 尚福特, 田继伟, 曹堃锐. ADS-B攻击数据弹性恢复方法[J]. 电子与信息学报, 2020, 42(10): 2365-2373. doi: 10.11999/JEIT191020
Tengyao LI, Buhong WANG, Fute SHANG, Jiwei TIAN, Kunrui CAO. A Resilient Recovery Method on ADS-B Attack Data[J]. Journal of Electronics & Information Technology, 2020, 42(10): 2365-2373. doi: 10.11999/JEIT191020
Citation: Tengyao LI, Buhong WANG, Fute SHANG, Jiwei TIAN, Kunrui CAO. A Resilient Recovery Method on ADS-B Attack Data[J]. Journal of Electronics & Information Technology, 2020, 42(10): 2365-2373. doi: 10.11999/JEIT191020

ADS-B攻击数据弹性恢复方法

doi: 10.11999/JEIT191020
基金项目: 国家自然科学基金(61902426)
详细信息
    作者简介:

    李腾耀:男,1991年生,博士生,研究方向为ADS-B数据攻击检测及弹性恢复

    王布宏:男,1975年生,博士,教授,研究方向为空管安全、信息物理系统安全和人工智能安全

    尚福特:男,1992年生,博士生,研究方向为信息物理系统安全

    田继伟:男,1993年生,博士生,研究方向为信息物理系统安全和人工智能安全

    曹堃锐:男,1989年生,博士生,研究方向为无线网络物理层安全

    通讯作者:

    王布宏 wbhgroup@aliyun.com

  • 中图分类号: TP915.08

A Resilient Recovery Method on ADS-B Attack Data

Funds: The National Natural Science Foundation of China (61902426)
  • 摘要: 为了对自动广播相关监视(ADS-B)攻击数据进行弹性恢复,确保空情态势感知信息的持续可用性,该文提出针对ADS-B攻击数据的弹性恢复方法。基于前置的攻击检测机制,获取当前ADS-B量测数据序列和预测数据序列,并在此基础上构建偏差数据序列、差分数据序列和邻近密度数据序列。依托偏差数据构建恢复向量,依托差分数据挖掘攻击数据的时序特性,依托邻近密度数据挖掘攻击数据的空间特性。通过整合3种数据序列构建弹性恢复策略并确定恢复终止点,实现对攻击影响的弱化,将ADS-B攻击数据向正常数据方向进行定向恢复。通过对6种典型攻击样式的实验分析,证明该弹性恢复方法能够有效恢复ADS-B攻击数据,削弱数据攻击对监视系统的影响。
  • 图  1  问题建模

    图  2  偏差数据分析

    图  3  数据恢复效果(ATK-1~ATK-3)

    图  4  差分数据分析

    图  5  数据恢复效果(ATK-4, ATK-5)

    图  6  数据恢复效果(ATK-6)

    图  7  恢复策略效能分析

    表  1  构造的典型攻击样式

    编号攻击模式攻击影响
    ATK-1常量偏差注入攻击针对ADS-B多属性数据注入常量偏差
    ATK-2随机偏差注入攻击针对ADS-B多属性数据注入随机偏差
    ATK-3增量偏差注入攻击针对ADS-B多属性数据注入增量偏差
    ATK-4航迹替换攻击针对特定时间窗口内的航迹进行替换
    ATK-5航迹重放攻击在特定时间长度下实现航迹重放
    ATK-6飞行器泛洪攻击向当前空域态势中注入大量幽灵飞行器目标
    下载: 导出CSV
  • STROHMEIER M, SCHÄFER M, PINHEIRO R, et al. On perception and reality in wireless air traffic communication security[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(6): 1338–1357. doi: 10.1109/tits.2016.2612584
    WANG Wenyi, WU Renbiao, and LIANG Junli. ADS-B signal separation based on blind adaptive beamforming[J]. IEEE Transactions on Vehicular Technology, 2019, 68(7): 6547–6556. doi: 10.1109/TVT.2019.2914233
    SUN Junzi, VÛ H, ELLERBROEK J, et al. pyModeS: Decoding mode-S surveillance data for open air transportation research[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(7): 2777–2786. doi: 10.1109/TITS.2019.2914770
    STROHMEIER M, SCHÄFER M, LENDERS V, et al. Realities and challenges of NextGen air traffic management: The case of ADS-B[J]. IEEE Communications Magazine, 2014, 52(5): 111–118. doi: 10.1109/MCOM.2014.6815901
    STROHMEIER M, LENDERS V, and MARTINOVIC I. On the security of the automatic dependent surveillance-broadcast protocol[J]. IEEE Communications Surveys & Tutorials, 2015, 17(2): 1066–1087. doi: 10.1109/comst.2014.2365951
    MANESH M R and KAABOUCH N. Analysis of vulnerabilities, attacks, countermeasures and overall risk of the automatic dependent surveillance-broadcast (ADS-B) system[J]. International Journal of Critical Infrastructure Protection, 2017, 19: 16–31. doi: 10.1016/j.ijcip.2017.10.002
    钱亚冠, 卢红波, 纪守领, 等. 基于粒子群优化的对抗样本生成算法[J]. 电子与信息学报, 2019, 41(7): 1658–1665. doi: 10.11999/JEIT180777

    QIAN Yaguan, LU Hongbo, JI Shouling, et al. Adversarial example generation based on particle swarm optimization[J]. Journal of Electronics &Information Technology, 2019, 41(7): 1658–1665. doi: 10.11999/JEIT180777
    SCHÄFER M, LENDERS V, and MARTINOVIC I. Experimental analysis of attacks on next generation air traffic communication[C]. The 11th International Conference on Applied Cryptography and Network Security, Berlin, Germany, 2013: 253–271. doi: 10.1007/978-3-642-38980-1_16.
    COSTIN A and FRANCILLON A. Ghost in the air (traffic): On insecurity of ADS-B protocol and practical attacks on ADS-B devices[C]. Black Hat, Las Vegas, USA, 2012: 1–10.
    陈红松, 陈京九. 基于循环神经网络的无线网络入侵检测分类模型构建与优化研究[J]. 电子与信息学报, 2019, 41(6): 1427–1433. doi: 10.11999/JEIT180691

    CHEN Hongsong and CHEN Jingjiu. Recurrent neural networks based wireless network intrusion detection and classification model construction and optimization[J]. Journal of Electronics &Information Technology, 2019, 41(6): 1427–1433. doi: 10.11999/JEIT180691
    YING Xuhang, MAZER J, BERNIERI G, et al. Detecting ADS-B spoofing attacks using deep neural networks[C]. 2019 IEEE Conference on Communications and Network Security, Washington, USA, 2019: 187–195. doi: 10.1109/CNS.2019.8802732.
    HABLER E and SHABTAI A. Using LSTM encoder-decoder algorithm for detecting anomalous ADS-B messages[J]. Computers & Security, 2018, 78: 155–173. doi: 10.1016/j.cose.2018.07.004
    丁建立, 邹云开, 王静, 等. 基于深度学习的ADS-B异常数据检测模型[J]. 航空学报, 2019, 40(12): 323220. doi: 10.7527/S1000-6893.2019.23220

    DING Jianli, ZOU Yunkai, WANG Jing, et al. ADS-B anomaly data detection model based on deep learning[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(12): 323220. doi: 10.7527/S1000-6893.2019.23220
    LI Tengyao, WANG Buhong, SHANG Fute, et al. Online sequential attack detection for ADS-B data based on hierarchical temporal memory[J]. Computers & Security, 2019, 87: 101599. doi: 10.1016/j.cose.2019.101599
    ZHANG Tao, WU Renbiao, LAI Ran, et al. Probability hypothesis density filter for radar systematic bias estimation aided by ADS-B[J]. Signal Processing, 2016, 120: 280–287. doi: 10.1016/j.sigpro.2015.09.012
    SMITH M, STROHMEIER M, HARMAN J, et al. Safety vs. security: Attacking avionic systems with humans in the loop[J]. arXiv, 2019, 1905.08039.
    STROHMEIER M, MARTINOVIC I, FUCHS M, et al. Opensky: A swiss army knife for air traffic security research[C]. The 34th IEEE/AIAA Digital Avionics Systems Conference, Prague, Czech Republic, 2015: 1–14. doi: 10.1109/DASC.2015.7311411.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  1691
  • HTML全文浏览量:  612
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-23
  • 修回日期:  2020-05-22
  • 网络出版日期:  2020-07-21
  • 刊出日期:  2020-10-13

目录

    /

    返回文章
    返回