高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种优化的频率驾驭算法研究

赵书红 董绍武 白杉杉 高喆

赵书红, 董绍武, 白杉杉, 高喆. 一种优化的频率驾驭算法研究[J]. 电子与信息学报, 2021, 43(5): 1457-1464. doi: 10.11999/JEIT190980
引用本文: 赵书红, 董绍武, 白杉杉, 高喆. 一种优化的频率驾驭算法研究[J]. 电子与信息学报, 2021, 43(5): 1457-1464. doi: 10.11999/JEIT190980
Shuhong ZHAO, Shaowu DONG, Shanshan BAI, Zhe GAO. Research on An Optimized Frequency Steering Algorithm[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1457-1464. doi: 10.11999/JEIT190980
Citation: Shuhong ZHAO, Shaowu DONG, Shanshan BAI, Zhe GAO. Research on An Optimized Frequency Steering Algorithm[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1457-1464. doi: 10.11999/JEIT190980

一种优化的频率驾驭算法研究

doi: 10.11999/JEIT190980
基金项目: 国家自然科学基金(11773030);中国科学院青年创新促进会资助项目(2020402)
详细信息
    作者简介:

    赵书红:女,1984年生,副研究员,博士,研究方向为UTC(NTSC)时间保持技术、原子钟频率驾驭技术、北斗系统时间基准和时间传递方法

    董绍武:男,1963年生,研究员,博士生导师,研究方向为标准时间的产生与保持(守时)技术、GNSS时间系统

    白杉杉:女,1987年生,助理研究员,博士生,研究方向为原子钟频率驾驭技术、时间尺度算法

    高喆:女,1991年生,研究实习员,硕士生,研究方向为高精度卫星双向时间传递

    通讯作者:

    董绍武 sdong@ntsc.ac.cn

  • 中图分类号: TN96; TH714

Research on An Optimized Frequency Steering Algorithm

Funds: The National Natural Science Foundation of China (11773030), The Youth Innovation Promotion Association Foundation of the Chinese Academy of Sciences(2020402)
  • 摘要: 为满足各应用领域对高精度时间性能不断提升的需求,该文设计实现了一种迭代的优化频率驾驭算法,主要分为纸面时间计算和实际物理信号实现两个部分。其中纸面时间计算采用ALGOS算法,利用实时原子钟数据和Circular T公报数据计算获得准确可靠的时间尺度,保障了驾驭参考的准确性和实时性。实时物理信号实现采用最优二次型高斯控制算法与Kalman算法综合,通过实时调整参数,计算出最优的频率驾驭量,将该驾驭量输送至频率调整设备,最终实现高精度时间信号的输出,整个驾驭系统是闭环的。该文基于我国时间基准保持系统和原子钟组,搭建试验平台,采用该算法对一台氢钟进行为期140天的频率驾驭,最终对输出的物理信号进行性能评估。试验结果表明,该算法有效提高了驾驭后物理信号的准确度和稳定度,驾驭后信号与国际标准时间协调世界时(UTC)相比,相位偏差保持在±3 ns以内,且30天稳定度优于5×10–16
  • 图  1  氢钟的频率驾驭框图

    图  2  TA、UTC与UTC(NTSC)相位偏差结果

    图  3  TA相对于UTC的相位偏差以及稳定度结果

    图  4  WR值固定,WQ不同取值的增益

    图  5  WQ值固定,WR不同取值的函数f变化曲线

    图  6  氢原子钟的频率驾驭量

    图  7  采用优化的频率驾驭算法和最小二乘估计方法,驾驭后的输出信号与TA的结果分析

    图  8  采用优化的频率驾驭算法和最小二乘估计方法,驾驭后的输出信号与TA的稳定度结果

    图  9  采用优化的频率驾驭算法,驾驭后的输出信号与UTC的结果分析

    图  10  以UTC作为参考,氢钟H067,纸面时间TA和驾驭后实时物理信号的稳定度结果

  • [1] 杨文哲, 杨宏雷, 王学运, 等. 高精度光纤时间频率一体化传递[J]. 电子与信息学报, 2019, 41(7): 1579–1586. doi: 10.11999/JEIT180807

    YANG Wenzhe, YANG Honglei, WANG Xueyun, et al. High precision time and frequency integration transfer via optical fiber[J]. Journal of Electronics &Information Technology, 2019, 41(7): 1579–1586. doi: 10.11999/JEIT180807
    [2] PANFILO G, HARMEGNIES A, and TISSERAND L. A new prediction algorithm for the generation of International Atomic Time[J]. Metrologia, 2012, 49(1): 49–56. doi: 10.1088/0026-1394/49/1/008
    [3] 侯志强, 王帅, 廖秀峰, 等. 基于样本质量估计的空间正则化自适应相关滤波视觉跟踪[J]. 电子与信息学报, 2019, 41(8): 1983–1991. doi: 10.11999/JEIT180921

    HOU Zhiqiang, WANG Shuai, LIAO Xiufeng, et al. Adaptive regularized correlation filters for visual tracking based on sample quality estimation[J]. Journal of Electronics &Information Technology, 2019, 41(8): 1983–1991. doi: 10.11999/JEIT180921
    [4] PETIT G. Towards an optimal weighting scheme for TAI computation[J]. Metrologia, 2003, 40(3): 252–256. doi: 10.1088/0026-1394/40/3/304
    [5] ZHAO Shuhong, DONG Shaowu, QU Lili, et al. A new steering strategy for UTC(NTSC) based on hydrogen maser[C]. Proceedings of 2016 IEEE International Frequency Control Symposium (IFCS), New Orleans, USA, 2016: 227–231.
    [6] ZHAO Shuhong, WANG Zhengming, and YIN Dongshan. A study on the steering strategy for the master clock[J]. Chinese Astronomy and Astrophysics, 2015, 39(1): 118–128. doi: 10.1016/j.chinastron.2015.01.008
    [7] GREENHALL C A. A review of reduced Kalman filters for clock ensembles[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59(3): 491–496. doi: 10.1109/TUFFC.2012.2219
    [8] 王雪梅, 刘文强, 邓自立. 不确定系统鲁棒协方差交叉融合稳态Kalman滤波器[J]. 电子与信息学报, 2015, 37(8): 1900–1905. doi: 10.11999/JEIT141515

    WANG Xuemei, LIU Wenqiang, and DENG Zili. Robust covariance intersection fusion steady-state Kalman filter for uncertain systems[J]. Journal of Electronics &Information Technology, 2015, 37(8): 1900–1905. doi: 10.11999/JEIT141515
    [9] 耿友林, 解成博, 尹川, 等. 基于卡尔曼滤波的接收信号强度指示差值定位算法[J]. 电子与信息学报, 2019, 41(2): 455–461. doi: 10.11999/JEIT180268

    GENG Youlin, XIE Chengbo, YIN Chuan, et al. Received signal strength indication difference location algorithm based on Kalman filter[J]. Journal of Electronics &Information Technology, 2019, 41(2): 455–461. doi: 10.11999/JEIT180268
    [10] KOPPANG P and LELAND R. Linear quadratic stochastic control of atomic hydrogen masers[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1999, 46(3): 517–522. doi: 10.1109/58.764838
    [11] GÖDEL M and FURTHNER J. Robust ensemble time onboard a satellite[C]. Proceedings of the 48th Annual Precise Time and Time Interval Systems and Applications Meeting, Monterey, USA, 2017: 26–43.
    [12] 张泉, 尹达一, 张茜丹, 等. 压电执行器动态迟滞建模与LQG最优控制器设计[J]. 光学精密工程, 2018, 26(11): 2744–2753. doi: 10.3788/OPE.20182611.2744

    ZHANG Quan, YIN Dayi, ZHANG Xidan, et al. Dynamic hysteresis modeling and LQG optimal controller design of piezoelectric actuators[J]. Optics and Precision Engineering, 2018, 26(11): 2744–2753. doi: 10.3788/OPE.20182611.2744
    [13] 崔挺, 严运兵, 肖小城. LQG/LTR控制在二级倒立摆系统中的应用研究[J]. 武汉科技大学学报, 2014, 37(4): 300–304.

    CUI Ting, YAN Yunbing, and XIAO Xiaocheng. Application of LQG/LTR control in double inverted pendulum system[J]. Journal of Wuhan University of Science and Technology, 2014, 37(4): 300–304.
    [14] DAVIS J A, GREENHALL C A, and STACEY P W. A Kalman filter clock algorithm for use in the presence of flicker frequency modulation noise[J]. Metrologia, 2005, 42(1): 1–10. doi: 10.1088/0026-1394/42/1/001
    [15] PANFILO G and TAVELLA P. Atomic clock prediction based on stochastic differential equations[J]. Metrologia, 2008, 45(6): 108–116. doi: 10.1088/0026-1394/45/6/S16
    [16] FELBACH D, SOUALLE F, STOPFKUCHEN L, et al. Clock monitoring and control units for navigation satellites[C]. Proceedings of 2010 IEEE International Frequency Control Symposium, Newport Beach, USA, 2010: 474–479.
    [17] 白杉杉, 董绍武, 赵书红, 等. 主动型氢原子钟性能监测及评估方法研究[J]. 天文学报, 2018, 59(6): 56–66.

    BAI Shanshan, DONG Shaowu, ZHAO Shuhong, et al. Research on the method of performance monitoring and evaluation for active hydrogen maser[J]. Acta Astronomica Sinica, 2018, 59(6): 56–66.
    [18] BAI Shanshan, ZHAO Shuhong, DONG Shaowu, et al. Joint time scale algorithm of UTC(NTSC) and UTC(SU)[C]. European Frequency and Time Forum & International Frequency Control Symposium (EFTF/IFC), Olympic Valley, USA, 2018: 197–201.
    [19] ZUCCA C and TAVELLA P. The clock model and its relationship with the Allan and related variances[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52(2): 289–296. doi: 10.1109/TUFFC.2005.1406554
    [20] FARINA M, GALLEANI L, TAVELLA P, et al. A control theory approach to clock steering techniques[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57(10): 2257–2270. doi: 10.1109/TUFFC.2010.1687
    [21] ZHAO Shuhong, YIN Dongshan, DONG Shaowu, et al. A new steering strategy for UTC(NTSC)[C]. Proceedings of the 1st IEEE International Frequency Control Symposium (IFCS), Taipei, China, 2014: 210–213.
  • 加载中
图(10)
计量
  • 文章访问数:  1057
  • HTML全文浏览量:  668
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-20
  • 修回日期:  2020-11-17
  • 网络出版日期:  2020-12-03
  • 刊出日期:  2021-05-18

目录

    /

    返回文章
    返回