高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于混沌理论的无源互调功率预测研究

白春江 崔万照 李军

白春江, 崔万照, 李军. 基于混沌理论的无源互调功率预测研究[J]. 电子与信息学报, 2021, 43(1): 124-130. doi: 10.11999/JEIT190977
引用本文: 白春江, 崔万照, 李军. 基于混沌理论的无源互调功率预测研究[J]. 电子与信息学报, 2021, 43(1): 124-130. doi: 10.11999/JEIT190977
Chunjiang BAI, Wanzhao CUI, Jun LI. Prediction of Passive Intermodulation Level Based on Chaos Method[J]. Journal of Electronics & Information Technology, 2021, 43(1): 124-130. doi: 10.11999/JEIT190977
Citation: Chunjiang BAI, Wanzhao CUI, Jun LI. Prediction of Passive Intermodulation Level Based on Chaos Method[J]. Journal of Electronics & Information Technology, 2021, 43(1): 124-130. doi: 10.11999/JEIT190977

基于混沌理论的无源互调功率预测研究

doi: 10.11999/JEIT190977
基金项目: 国家自然科学基金(U1537211)
详细信息
    作者简介:

    白春江:男,1984年生,高级工程师,主要研究方向为空间微波特殊效应

    崔万照:男,1975年生,研究员,主要研究方向为空间微波特殊效应

    李军:男,1968年生,研究员,主要研究方向为大功率微波无源器件

    通讯作者:

    崔万照 cuiwanzhao@126.com

  • 中图分类号: TN92

Prediction of Passive Intermodulation Level Based on Chaos Method

Funds: The National Natural Science Foundation of China (U1537211)
  • 摘要:

    该文以通信系统中常用的典型微波部件——同轴连接器为研究对象,基于混沌理论对获得的同轴连接器的无源互调(PIM)功率时间序列进行分析,验证了使用混沌理论预测无源互调的有效性。首先通过实验系统获得同轴连接器的3阶无源互调功率时间序列,并对得到的实验数据进行相空间重构,确定该时间序列的最佳嵌入维数m和延迟时间τ。然后,结合最佳嵌入维数和延迟时间,分别构建相图和使用小数据量法计算该时间序列的最大Lyapunov指数,从而从定性和定量角度验证了该无源互调功率时间序列具有混沌特性。在此基础上,基于获得的最大Lyapunov指数对该无源互调功率时间序列进行混沌预测,在最大可预测尺度范围内,理论预测值与实验值最大误差为2.61%,表明采用混沌方法预测无源互调功率效果较好。该文提出的使用混沌理论预测通信系统中微波部件无源互调功率的方法,为开展无源互调抑制技术研究,提高通信系统的性能提供了新思路。

  • 图  1  PIM测试系统及待测样件

    图  2  3阶PIM功率时间序列

    图  3  C-C方法计算的最优时间延迟和最优延迟时间窗口

    图  4  PIM功率时间序列3维相空间图

    图  5  小数据量法计算的最大Lyapunov指数

    图  6  前100 s的预测结果

    图  7  前200 s的预测结果

  • LUI P L. Passive intermodulation interference in communication systems[J]. Electronics & Communication Engineering Journal, 1990, 2(3): 109–118.
    张世全, 傅德民, 葛德彪. 无源互调干扰对通信系统抗噪性能的影响[J]. 电波科学学报, 2002, 17(2): 138–142. doi: 10.3969/j.issn.1005-0388.2002.02.009

    ZHANG Shiquan, FU Demin, and GE Debiao. The effects of passive intermodulation interference on the anti-noise property of communications systems[J]. Chinese Journal of Radio Science, 2002, 17(2): 138–142. doi: 10.3969/j.issn.1005-0388.2002.02.009
    BOYHAN J W, HENZING H F, and KODURU C. Satellite passive intermodulation: Systems considerations[J]. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(3): 1058–1064. doi: 10.1109/7.532264
    ZHAO Xiaolong, HE Yongning, YE Ming, et al. Analytic passive intermodulation model for flange connection based on metallic contact nonlinearity approximation[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(7): 2279–2287. doi: 10.1109/TMTT.2017.2668402
    VICENTE C and HARTNAGEL H L. Passive-intermodulation analysis between rough rectangular waveguide flanges[J]. IEEE Transactions on Microwave Theory and Techniques, 2005, 53(8): 2515–2525. doi: 10.1109/TMTT.2005.852771
    CHEN Xiong, HE Yongning, YANG Sen, et al. Analytic passive intermodulation behavior on the coaxial connector using monte carlo approximation[J]. IEEE Transactions on Electromagnetic Compatibility, 2018, 60(5): 1207–1214. doi: 10.1109/TEMC.2018.2809449
    ZHANG Kai, LI Tuanjie, and JIANG Jie. Passive intermodulation of contact nonlinearity on microwave connectors[J]. IEEE Transactions on Electromagnetic Compatibility, 2018, 60(2): 513–519. doi: 10.1109/TEMC.2017.2725278
    张世全, 葛德彪. 通信系统无源非线性引起的互调干扰[J]. 陕西师范大学学报: 自然科学版, 2004, 32(1): 58–62. doi: 10.3321/j.issn:1672-4291.2004.01.016

    ZHANG Shiquan and GE Debiao. Intermodulation interference due to passive nonlinearity in communication systems[J]. Journal of Shaanxi Normal University:Natural Science Edition, 2004, 32(1): 58–62. doi: 10.3321/j.issn:1672-4291.2004.01.016
    王海宁, 梁建刚, 王积勤, 等. 高功率微波条件下的无源互调问题综述[J]. 微波学报, 2005, 21(S1): 1–6. doi: 10.3969/j.issn.1005-6122.2005.z1.001

    WANG Haining, LIANG Jiangang, WANG Jiqin, et al. Review of passive intermodulation in HPM condition[J]. Journal of Microwaves, 2005, 21(S1): 1–6. doi: 10.3969/j.issn.1005-6122.2005.z1.001
    田露. 星上无源互调干扰数字抑制技术研究[D]. [博士论文], 北京理工大学, 2017.

    TIAN Lu. Digital suppression technique of passive intermodulation interference for satellite systems[D]. [Ph. D. dissertation], Beijing Institute of Technology, 2017.
    李玲玲, 马东娟, 李志刚. 触点动态接触电阻时间序列混沌预测[J]. 电工技术学报, 2014, 29(9): 187–193. doi: 10.3969/j.issn.1000-6753.2014.09.027

    LI Lingling, MA Dongjuan, and LI Zhigang. Chaotic predication of dynamic contact resistance times series on contacts[J]. Transactions of China Electrotechnical Society, 2014, 29(9): 187–193. doi: 10.3969/j.issn.1000-6753.2014.09.027
    曾以成, 成德武, 谭其威. 简洁无电感忆阻混沌电路及其特性[J]. 电子与信息学报, 2020, 42(4): 862–869. doi: 10.11999/JEIT190859

    ZENG Yicheng, CHENG Dewu, and TAN Qiwei. A simple inductor-free memristive chaotic circuit and its characteristics[J]. Journal of Electronics &Information Technology, 2020, 42(4): 862–869. doi: 10.11999/JEIT190859
    眭萍, 郭英, 李红光, 等. 基于混沌吸引子重构和Low-rank聚类的跳频信号电台分选[J]. 电子与信息学报, 2019, 41(12): 2965–2971. doi: 10.11999/JEIT180947

    SUI Ping, GUO Ying, LI Hongguang, et al. Frequency-hopping transmitter classification based on chaotic attractor reconstruction and low-rank clustering[J]. Journal of Electronics &Information Technology, 2019, 41(12): 2965–2971. doi: 10.11999/JEIT180947
    MAZZINI G, SETTI G, and ROVATTI R. Chaotic complex spreading sequences for asynchronous DS-CDMA. I. System modeling and results[J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 1997, 44(10): 937–947. doi: 10.1109/81.633883
    SCHIMMING T and HASLER M. Chaos communication in the presence of channel noise[J]. Journal of Signal Process, 2000, 4(1): 21–28.
    ROSENSTEIN M T, COLLINS J J, and DE LUCA C J. A practical method for calculating largest Lyapunov exponents from small data sets[J]. Physica D, 1993, 65(1/2): 117–134. doi: 10.1016/0167-2789(93)90009-P
    WOLF A, SWIFT J B, SWINNEY H L, et al. Determining Lyapunov exponents from a time series[J]. Physica D: Nonlinear Phenomena, 1985, 16(3): 285–317. doi: 10.1016/0167-2789(85)90011-9
    SATO S, SANO M, and SAWADA Y. Practical methods of measuring the generalized dimension and the largest Lyapunov exponent in high dimensional chaotic systems[J]. Progress of Theoretical Physics, 1987, 77(1): 1–5. doi: 10.1143/ptp.77.1
    ZHANG Jun, LAM K C, YAN W J, et al. Time series prediction using Lyapunov exponents in embedding phase space[J]. Computers & Electrical Engineering, 2004, 30(1): 1–15. doi: 10.1016/S0045-7906(03)00015-6
    CAO Liangyue. Practical method for determining the minimum embedding dimension of a scalar time series[J]. Physica D: Nonlinear Phenomena, 1997, 110(1/2): 43–50. doi: 10.1016/S0167-2789(97)00118-8
    KIM H S, EYKHOLT R, and SALAS J D. Nonlinear dynamics, delay times, and embedding windows[J]. Physica D: Nonlinear Phenomena, 1999, 127(1/2): 48–60. doi: 10.1016/S0167-2789(98)00240-1
    龚祝平. 混沌时间序列的平均周期计算方法[J]. 系统工程, 2010, 28(12): 111–113.

    GONG Zhuping. The calculating method of the average period of chaotic time series[J]. Systems Engineering, 2010, 28(12): 111–113.
    张春涛, 刘学飞, 向瑞银, 等. 基于最大互信息的混沌时间序列多步预测[J]. 控制与决策, 2012, 27(6): 941–944.

    ZHANG Chuntao, LIU Xuefei, XIANG Ruiyin, et al. Multi-step-prediction of chaotic time series based on maximized mutual information[J]. Control and Decision, 2012, 27(6): 941–944.
  • 加载中
图(7)
计量
  • 文章访问数:  993
  • HTML全文浏览量:  344
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-05
  • 修回日期:  2020-10-18
  • 网络出版日期:  2020-11-19
  • 刊出日期:  2021-01-15

目录

    /

    返回文章
    返回