高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

引入语义部位约束的行人再识别

陈莹 陈巧媛

陈莹, 陈巧媛. 引入语义部位约束的行人再识别[J]. 电子与信息学报, 2020, 42(12): 3037-3044. doi: 10.11999/JEIT190954
引用本文: 陈莹, 陈巧媛. 引入语义部位约束的行人再识别[J]. 电子与信息学报, 2020, 42(12): 3037-3044. doi: 10.11999/JEIT190954
Ying CHEN, Qiaoyuan CHEN. Semantic Part Constraint for Person Re-identification[J]. Journal of Electronics & Information Technology, 2020, 42(12): 3037-3044. doi: 10.11999/JEIT190954
Citation: Ying CHEN, Qiaoyuan CHEN. Semantic Part Constraint for Person Re-identification[J]. Journal of Electronics & Information Technology, 2020, 42(12): 3037-3044. doi: 10.11999/JEIT190954

引入语义部位约束的行人再识别

doi: 10.11999/JEIT190954
基金项目: 国家自然科学基金(61573168),江苏省六大人才高峰资助项目(2015-WLW-004)
详细信息
    作者简介:

    陈莹:女,1976年生,教授,博士生导师,主要研究方向为信息融合、模式识别等

    陈巧媛:女,1995年生,硕士生,研究方向为行人再识别

    通讯作者:

    陈莹 chenying@jiangnan.edu.cn

  • 中图分类号: TN911.73; TP391

Semantic Part Constraint for Person Re-identification

Funds: The National Natural Science Foundation of China (61573168), The Six Talent Summit Project Talents of Jiangsu Province (2015-WLW-004)
  • 摘要: 为减轻行人图片中的背景干扰,使网络着重于行人前景并且提高前景中人体部位的利用率,该文提出引入语义部位约束(SPC)的行人再识别网络。在训练阶段,首先将行人图片同时输入主干网络和语义部位分割网络,分别得到行人特征图和部位分割图;然后,将部位分割图与行人特征图融合,得到语义部位特征;接着,对行人特征图进行池化得到全局特征;最后,同时使用身份约束和语义部位约束训练网络。在测试阶段,由于语义部位约束使得全局特征拥有部位信息,因此测试时仅使用主干网络提取行人的全局信息即可。在大规模公开数据集上的实验结果表明,语义部位约束能有效使得网络提高辨别行人身份的能力并且缩减推断网络的计算花费。与现有方法比较,该文网络能更好地抵抗背景干扰,提高行人再识别性能。
  • 图  1  本文网络结构图

    图  2  语义部位标签示例

    图  3  $\lambda $的取值对应Rank-1精度

    图  4  行人检索结果排序图

    表  1  在Market-1501数据集上的对比实验(%)

    实验编号行人特征网络约束Rank-1Rank-5Rank-10mAP
    1${{{f}}_{\rm{g}}}$${L_{{\rm{id}}}}$92.096.998.280.4
    2${{{C}}_f}$${L_{{\rm{id}}}}$92.797.598.680.6
    3${{{f}}_{\rm{g}}}$${L_{{\rm{id}}}} + {L_{{\rm{sp}}}}$93.697.698.783.6
    下载: 导出CSV

    表  2  不同网络测试时长对比(ms)

    方法批次特征提取耗时
    复现SPReID82.87
    本文网络9.45
    下载: 导出CSV

    表  3  不同方法在两个数据集上的性能比较(%)

    方法Market-1501DukeMTMC-reID
    Rank-1mAPRank-1mAP
    VIM[11]79.559.968.949.3
    SVDNet[12]82.362.176.756.8
    APR[3]84.364.770.751.2
    FMN[13]86.067.174.556.9
    PSE[14]87.769.079.862.0
    PN-GAN[15]89.472.673.653.2
    CamStyle[16]89.571.678.357.6
    HA-CNN[17]91.275.780.563.8
    Part-Aligned[4]91.779.684.469.3
    SPReID[5]92.581.384.471.0
    AHR[18]93.176.281.765.9
    本文方法93.683.685.471.3
    下载: 导出CSV
  • LIAO Shengcai, HU Yang, ZHU Xiangyu, et al. Person re-identification by local maximal occurrence representation and metric learning[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, America, 2015: 2197–2206. doi: 10.1109/CVPR.2015.7298832.
    陈莹, 许潇月. 基于双向参考集矩阵度量学习的行人再识别[J]. 电子与信息学报, 2020, 42(2): 394–402. doi: 10.11999/JEIT190159

    CHEN Ying and XU Xiaoyue. Matrix metric learning for person re-identification based on bidirectional reference set[J]. Journal of Electronics &Information Technology, 2020, 42(2): 394–402. doi: 10.11999/JEIT190159
    LIN Yutian, ZHENG Liang, ZHENG Zhedong, et al. Improving person re-identification by attribute and identity Learning[J]. Pattern Recognition, 2019, 95: 151–161. doi: 10.1016/j.patcog.2019.06.006
    SUH Y, WANG Jingdong, TANG Siyu, et al. Part-aligned bilinear representations for person re-identification[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 402–419. doi: 10.1007/978-3-030-01264-9_25.
    KALAYEH M M, BASARAN E, GOKMEN M, et al. Human semantic parsing for person re-identification[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, America, 2018: 1062–1071. doi: 10.1109/CVPR.2018.00117.
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, America, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
    FU Jun, LIU Jing, TIAN Haijie, et al. Dual attention network for scene segmentation[C]. The 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, America, 2019: 3146–3154.
    GÜLER R A, NEVEROVA N, and KOKKINOS I. DensePose: Dense human pose estimation in the wild[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, America, 2018: 7297–7306. doi: 10.1109/CVPR.2018.00762.
    ZHENG Liang, SHEN Liyue, TIAN Lu, et al. Scalable person re-identification: A benchmark[C]. 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1116–1124. doi: 10.1109/ICCV.2015.133.
    ZHENG Zhedong, ZHENG Liang, and YANG Yi. Unlabeled samples generated by GAN improve the person re-identification baseline in vitro[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 3754–3762. doi: 10.1109/ICCV.2017.405.
    ZHENG Zhedong, ZHENG Liang, and YANG Yi. A discriminatively learned CNN embedding for person reidentification[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2018, 14(1): 13. doi: 10.1145/3159171
    SUN Yifan, ZHENG Liang, DENG Weijian, et al. SVDNet for pedestrian retrieval[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 3800–3808. doi: 10.1109/ICCV.2017.410.
    DING Guodong, KHAN S, TANG Zhenmin, et al. Feature mask network for person re-identification[J]. Pattern Recognition Letters, 2020, 137: 91–98. doi: 10.1016/j.patrec.2019.02.015
    SARFRAZ M S, SCHUMANN A, EBERLE A, et al. A pose-sensitive embedding for person re-identification with expanded cross neighborhood re-ranking[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, America, 2018: 420–429. doi: 10.1109/CVPR.2018.00051.
    QIAN Xuelin, FU Yanwei, XIANG Tao, et al. Pose-normalized image generation for person re-identification[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 650–667. doi: 10.1007/978-3-030-01240-3_40.
    ZHONG Zhun, ZHENG Liang, ZHENG Zhedong, et al. CamStyle: A novel data augmentation method for person re-identification[J]. IEEE Transactions on Image Processing, 2019, 28(3): 1176–1190. doi: 10.1109/TIP.2018.2874313
    LI Wei, ZHU Xiatian, and GONG Shaogang. Harmonious attention network for person re-identification[C]. The 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, America, 2018: 2285–2294. doi: 10.1109/CVPR.2018.00243.
    陈鸿昶, 吴彦丞, 李邵梅, 等. 基于行人属性分级识别的行人再识别[J]. 电子与信息学报, 2019, 41(9): 2239–2246. doi: 10.11999/JEIT180740

    CHEN Hongchang, WU Yancheng, LI Shaomei, et al. Person re-identification based on attribute hierarchy recognition[J]. Journal of Electronics &Information Technology, 2019, 41(9): 2239–2246. doi: 10.11999/JEIT180740
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  1344
  • HTML全文浏览量:  628
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-27
  • 修回日期:  2020-06-04
  • 网络出版日期:  2020-07-28
  • 刊出日期:  2020-12-08

目录

    /

    返回文章
    返回