高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分数阶忆阻退化Jerk系统的特性分析与DSP实现

孙克辉 秦川 王会海

孙克辉, 秦川, 王会海. 分数阶忆阻退化Jerk系统的特性分析与DSP实现[J]. 电子与信息学报, 2020, 42(4): 888-894. doi: 10.11999/JEIT190904
引用本文: 孙克辉, 秦川, 王会海. 分数阶忆阻退化Jerk系统的特性分析与DSP实现[J]. 电子与信息学报, 2020, 42(4): 888-894. doi: 10.11999/JEIT190904
Kehui SUN, Chuan QIN, Huihai WANG. Characteristics Analysis and DSP Implementation of Fractional-order Memristive Hypogenetic Jerk System[J]. Journal of Electronics & Information Technology, 2020, 42(4): 888-894. doi: 10.11999/JEIT190904
Citation: Kehui SUN, Chuan QIN, Huihai WANG. Characteristics Analysis and DSP Implementation of Fractional-order Memristive Hypogenetic Jerk System[J]. Journal of Electronics & Information Technology, 2020, 42(4): 888-894. doi: 10.11999/JEIT190904

分数阶忆阻退化Jerk系统的特性分析与DSP实现

doi: 10.11999/JEIT190904
详细信息
    作者简介:

    孙克辉:男,1968年生,教授,博士生导师,主要研究方向为混沌理论与应用、非线性电路与系统

    秦川:男,1996年生,硕士生,主要研究方向为混沌动力学分析,分数阶混沌系统与应用

    王会海:男,1978年生,博士,副教授,主要研究方向为混沌理论及其应用、嵌入式系统应用

    通讯作者:

    孙克辉 kehui@csu.edu.cn

  • 中图分类号: TN601

Characteristics Analysis and DSP Implementation of Fractional-order Memristive Hypogenetic Jerk System

  • 摘要: 为了探究分数阶形式下该类系统的动力学特性,该文将分数阶微积分引入到忆阻退化Jerk系统中,增加了一个自由度,提升了系统性能。通过相图、分岔图、李雅普诺夫指数谱、复杂度混沌图等分析了系统的动力学特性,并采用DSP技术,实现了该系统的数字电路。研究结果表明,系统拓展到分数阶后有两种不同的单涡卷吸引子,系统随初值变化呈现倍周期分岔路径,在某些特定初值处系统演化路径出现跃变。系统具有无限多个吸引子共存。
  • 图  1  系统式(1)不同平面的吸引子相图

    图  2  不同阶数下的吸引子相图

    图  3  系统阶数q变化时的动力学特性

    图  4  系统参数a变化时的动力学特性

    图  5  系统参数b变化时的动力学特性

    图  6  系统参数a-b平面SE复杂度混沌图

    图  7  系统初值y(0)变化时的动力学特性

    图  8  系统初值w(0)变化时的动力学特性

    图  9  系统初值y(0)-w(0)平面SE复杂度混沌图

    图  10  分数阶式(3)系统的多吸引子共存现象

    图  11  不同初值下系统式(1)电路实验相图

  • CHUA L. Memristor-the missing circuit element[J]. IEEE Transactions on Circuit Theory, 1971, 18(5): 507–509. doi: 10.1109/TCT.1971.1083337
    STRUKOV D B, SNIDER G S, STEWART D R, et al. The missing memristor found[J]. Nature, 2008, 453(7191): 80–83. doi: 10.1038/nature06932
    YALAGALA B, and KHANDELWAL S. Wirelessly destructible MgO-PVP-Graphene composite based flexible transient memristor for security applications[J]. Materials Science in Semiconductor Processing, 2019, 104: 104673. doi: 10.1016/j.mssp.2019.104673
    张刚, 陈和祥, 张天骐. 多用户降噪差分混沌键控通信方案[J]. 电子与信息学报, 2019, 41(2): 362–368. doi: 10.11999/JEIT171173

    ZHANG Gang, CHEN Hexiang, and ZHANG Tianqi. A multiuser noise reduction differential chaos shift keying system[J]. Journal of Electronics &Information Technology, 2019, 41(2): 362–368. doi: 10.11999/JEIT171173
    ZHANG Weiwei, CAO Jinde, WU Ranchao, et al. Novel results on projective synchronization of fractional-order neural networks with multiple time delays[J]. Chaos, Solitons & Fractals, 2018, 117: 76–83. doi: 10.1016/j.chaos.2018.10.009
    LUNELLI L, COLLINI C, JIMENEZ-GARDUÑO A M, et al. Prototyping a memristive-based device to analyze neuronal excitability[J]. Biophysical Chemistry, 2019, 253: 106212. doi: 10.1016/j.bpc.2019.106212
    闵富红, 王珠林, 王恩荣, 等. 新型忆阻器混沌电路及其在图像加密中的应用[J]. 电子与信息学报, 2016, 38(10): 2681–2688.

    MIN Fuhong, WANG Zhulin, WANG Enrong, et al. New memristor chaotic circuit and its application to image encryption[J]. Journal of Electronics &Information Technology, 2016, 38(10): 2681–2688.
    RAJAGOPAL K, LAAREM G, KARTHIKEYAN A, et al. Fractional order memristor no equilibrium chaotic system with its adaptive sliding mode synchronization and genetically optimized fractional order PID synchronization[J]. Complexity, 2017, 2017: 1892618. doi: 10.1155/2017/1892618
    CHEN Mo, FENG Yang, BAO Han, et al. Hybrid state variable incremental integral for reconstructing extreme multistability in memristive Jerk system with cubic nonlinearity[J]. Complexity, 2019, 2019: 8549472. doi: 10.1155/2019/8549472
    XU Birong, WANG Guangyi, IU H H C, et al. A memristor-meminductor-based chaotic system with abundant dynamical behaviors[J]. Nonlinear Dynamics, 2019, 96(1): 765–788. doi: 10.1007/s11071-019-04820-1
    李志军, 曾以成. 基于文氏振荡器的忆阻混沌电路[J]. 电子与信息学报, 2014, 36(1): 88–93. doi: 10.3724/SP.J.1146.2013.00332

    LI Zhijun and ZENG Yicheng. A memristor chaotic circuit based on Wien-bridge oscillator[J]. Journal of Electronics &Information Technology, 2014, 36(1): 88–93. doi: 10.3724/SP.J.1146.2013.00332
    RAJAGOPAL K, LI Chunbiao, NAZARIMEHR F, et al. Chaotic dynamics of modified Wien bridge oscillator with fractional order memristor[J]. Radioengineering, 2019, 28(1): 165–174. doi: 10.13164/re.2019.0165
    RUAN Jingya, SUN Kehui, MOU Jun, et al. Fractional-order simplest memristor-based chaotic circuit with new derivative[J]. The European Physical Journal Plus, 2018, 133(1), No.3: 1–12. doi: 10.1140/epjp/i2018-11828-0.
    GUO Zhang, SI Gangquan, XU Xiang, et al. Generalized modeling and character analyzing of composite fractional-order memristors in series connection[J]. Nonlinear Dynamics, 2019, 95(1): 101–115. doi: 10.1007/s11071-018-4553-y
    SI Gangquan, DIAO Lijie, and ZHU Jianwei. Fractional-order charge-controlled memristor: Theoretical analysis and simulation[J]. Nonlinear Dynamics, 2017, 87(4): 2625–2634. doi: 10.1007/s11071-016-3215-1
    YANG Ningning, XU Cheng, WU Chaojun, et al. Fractional-order cubic nonlinear flux-controlled memristor: Theoretical analysis, numerical calculation and circuit simulation[J]. Nonlinear Dynamics, 2019, 97(1): 33–44. doi: 10.1007/s11071-019-04920-y
    YANG Ningning, CHENG Shucan, WU Chaojun, et al. Dynamic behaviors analysis of a chaotic circuit based on a novel fractional-order generalized memristor[J]. Complexity, 2019, 2019: 6083853. doi: 10.1155/2019/6083853
    MOU Jun, SUN Kehui, WANG Huihai, et al. Characteristic analysis of fractional-order 4D hyperchaotic memristive circuit[J]. Mathematical Problems in Engineering, 2017, 2017: 2313768. doi: 10.1155/2017/2313768
    LI Ruihong and HUANG Dongmei. Stability analysis and synchronization application for a 4D fractional-order system with infinite equilibria[J]. Physica Scripta, 2019, 95(1): 015202. doi: 10.1088/1402-4896/ab3ed2
    CHEN Chengjie, CHEN Jingqi, BAO Han, et al. Coexisting multi-stable patterns in memristor synapse-coupled Hopfield neural network with two neurons[J]. Nonlinear Dynamics, 2019, 95(4): 3385–3399. doi: 10.1007/s11071-019-04762-8
    BAO Han, WANG Ning, BAO Bocheng, et al. Initial condition-dependent dynamics and transient period in memristor-based hypogenetic jerk system with four line equilibria[J]. Communications in Nonlinear Science and Numerical Simulation, 2018, 57: 264–275. doi: 10.1016/j.cnsns.2017.10.001
    WAN Peng, SUN Dihua, ZHAO Min, et al. Multistability and attraction basins of discrete-time neural networks with nonmonotonic piecewise linear activation functions[J]. Neural Networks, 2020, 122: 231–238. doi: 10.1016/j.neunet.2019.10.005
    CHEN Mo, SUN Mengxia, BAO Han, et al. Flux-charge analysis of two-memristor-based Chua’s circuit: Dimensionality decreasing model for detecting extreme multistability[J]. IEEE Transactions on Industrial Electronics, 2020, 67(3): 2197–2206. doi: 10.1109/TIE.2019.2907444
    贺少波, 孙克辉, 王会海. 分数阶混沌系统的Adomian分解法求解及其复杂性分析[J]. 物理学报, 2014, 63(3): 030502. doi: 10.7498/aps.63.030502

    HE Shaobo, SUN Kehui, and WANG Huihai. Solution of the fractional-order chaotic system based on Adomian decomposition algorithm and its complexity analysis[J]. Acta Physica Sinica, 2014, 63(3): 030502. doi: 10.7498/aps.63.030502
    孙克辉, 贺少波, 何毅, 等. 混沌伪随机序列的谱熵复杂性分析[J]. 物理学报, 2013, 62(1): 010501. doi: 10.7498/aps.62.010501

    SUN Kehui, HE Shaobo, HE Yi, et al. Complexity analysis of chaotic pseudo-random sequences based on spectral entropy algorithm[J]. Acta Physica Sinica, 2013, 62(1): 010501. doi: 10.7498/aps.62.010501
  • 加载中
图(11)
计量
  • 文章访问数:  2181
  • HTML全文浏览量:  796
  • PDF下载量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-13
  • 修回日期:  2020-02-13
  • 网络出版日期:  2020-03-10
  • 刊出日期:  2020-06-04

目录

    /

    返回文章
    返回