高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种轻量级数据加密标准循环掩码实现方案

王立辉 闫守礼 李清

王立辉, 闫守礼, 李清. 一种轻量级数据加密标准循环掩码实现方案[J]. 电子与信息学报, 2020, 42(8): 1828-1835. doi: 10.11999/JEIT190870
引用本文: 王立辉, 闫守礼, 李清. 一种轻量级数据加密标准循环掩码实现方案[J]. 电子与信息学报, 2020, 42(8): 1828-1835. doi: 10.11999/JEIT190870
Lihui WANG, Shouli YAN, Qing LI. A Lightweight Implementation Scheme of Data Encryption Standard with Cyclic Mask[J]. Journal of Electronics & Information Technology, 2020, 42(8): 1828-1835. doi: 10.11999/JEIT190870
Citation: Lihui WANG, Shouli YAN, Qing LI. A Lightweight Implementation Scheme of Data Encryption Standard with Cyclic Mask[J]. Journal of Electronics & Information Technology, 2020, 42(8): 1828-1835. doi: 10.11999/JEIT190870

一种轻量级数据加密标准循环掩码实现方案

doi: 10.11999/JEIT190870
基金项目: 十三五预先研究项目(3110105-09)
详细信息
    作者简介:

    王立辉:男,1982年生,博士,高级工程师,研究方向为密码芯片安全设计

    闫守礼:男,1972年生,硕士,工程师,研究方向为密码芯片安全设计

    李清:女,1968年生,硕士,教授级高级工程师,研究方向为密码芯片安全设计

    通讯作者:

    李清 liqing@fmsh.com.cn

  • 中图分类号: TN918.4

A Lightweight Implementation Scheme of Data Encryption Standard with Cyclic Mask

Funds: The 13th Five-Year Plan Advance Reserch Projects Fund of China (3110105-09)
  • 摘要: 随着智能卡技术的不断发展,智能卡芯片的安全性也面临越来越大的挑战。在众多加密算法中,数据加密标准(DES)算法是一种应用较广的对称加解密算法。为了抵御各种侧信道攻击,使用最为广泛的是在算法中通过掩码技术来消除真实密钥和功耗相关性,该文提出一种新的适用于DES的循环掩码方案,和之前文献中的预计算掩码方案相比,不仅预计算量大大减少,而且整个DES运算过程的中间数据都是带有掩码的,把掩码拆分后,还可以防护高阶攻击。
  • 图  1  DES加密流程

    图  2  F函数

    图  3  5种不同的轮函数

    图  4  循环掩码方案

    图  5  SASEBO-GII开发板

    图  6  DES的首轮攻击位置

    图  7  DES的尾轮攻击位置

    表  1  不同方案的详细比较

    方案存储空间(Byte)预计算时间(clk)安全风险
    文献[17]方案1536384极性DPA,选择明文的2阶攻击
    文献[18]方案1536384极性DPA
    本文方案1024256
    下载: 导出CSV
  • KOCHER P C. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems[C]. The 16th Annual International Cryptology Conference, Santa Barbara, USA, 1996: 104–113. doi: 10.1007/3-540-68697-5_9.
    KOCHER P C, JAFFE J, and JUN B. Differential power analysis[C]. The 19th Annual International Cryptology Conference, Santa Barbara, USA, 1999: 388–397. doi: 10.1007/3-540-48405-1_25.
    RENAULD M and STANDAERT F X. Algebraic side-channel attacks[C]. The 5th International Conference on Information Security and Cryptology, Beijing, China, 2010: 393–410. doi: 10.1007/978-3-642-16342-5_29.
    TIRI K, AKMAL M, and VERBAUWHEDE I. A dynamic and differential CMOS logic with signal independent power consumption to withstand differential power analysis on smart cards[C]. The 28th European Solid-State Circuits Conference, Florence, Italy, 2002: 403–406.
    TIRI K and VERBAUWHEDE I. A logic level design methodology for a secure DPA resistant ASIC or FPGA implementation[C]. Design, Automation and Test in Europe Conference and Exhibition, Paris, France, 2004: 246–251. doi: 10.1109/DATE.2004.1268856.
    GUILLEY S, FLAMENT F, HOOGVORST P, et al. Secured CAD back-end flow for power-analysis-resistant cryptoprocessors[J]. IEEE Design & Test of Computers, 2007, 24(6): 546–555. doi: 10.1109/MDT.2007.202
    乐大珩, 李少青, 张民选. 基于LBDL逻辑的抗DPA攻击电路设计方法[J]. 国防科技大学学报, 2009, 31(6): 18–24. doi: 10.3969/j.issn.1001-2486.2009.06.004

    YUE Daheng, LI Shaoqing, and ZHANG Minxuan. An LBDL based VLSI design method to counteract DPA attacks[J]. Journal of National University of Defense Technology, 2009, 31(6): 18–24. doi: 10.3969/j.issn.1001-2486.2009.06.004
    YANG Shengqi, WOLF W, VIJAYKRISHNAN N et al. Power attack resistant cryptosystem design: A dynamic voltage and frequency switching approach[C]. The Conference on Design, Automation and Test in Europe, Munich, Germany, 2005: 64–69. doi: 10.1109/DATE.2005.241.
    CORON J S and KIZHVATOV I. An efficient method for random delay generation in embedded software[C]. The 11th International Workshop on Cryptographic Hardware and Embedded Systems, Lausanne, Switzerland, 2009: 156–170. doi: 10.1007/978-3-642-04138-9_12.
    CORON J S. Resistance against differential power analysis for elliptic curve cryptosystems[C]. The 1st International Workshop on Cryptographic Hardware and Embedded Systems, Worcester, USA, 1999: 292–302. doi: 10.1007/3-540-48059-5_25.
    黄海, 冯新新, 刘红雨, 等. 基于随机加法链的高级加密标准抗侧信道攻击对策[J]. 电子与信息学报, 2019, 41(2): 348–354. doi: 10.11999/JEIT171211

    HUANG Hai, FENG Xinxin, LIU Hongyu, et al. Random addition-chain based countermeasure against side-channel attack for advanced encryption standard[J]. Journal of Electronics &Information Technology, 2019, 41(2): 348–354. doi: 10.11999/JEIT171211
    汪鹏君, 张跃军, 张学龙. 防御差分功耗分析攻击技术研究[J]. 电子与信息学报, 2012, 34(11): 2774–2784. doi: 10.3724/SP.J.1146.2012.00555

    WANG Pengjun, ZHANG Yuejun, and ZHANG Xuelong. Research of differential power analysis countermeasures[J]. Journal of Electronics &Information Technology, 2012, 34(11): 2774–2784. doi: 10.3724/SP.J.1146.2012.00555
    GOUBIN L and PATARIN J. DES and differential power analysis the “duplication” method[C]. The 1st International Workshop on Cryptographic Hardware and Embedded Systems, Worcester, USA, 1999: 158–172. doi: 10.1007/3-540-48059-5_15.
    STANDAERT F X, ROUVROY G, and QUISQUATER J J. FPGA implementations of the DES and triple-DES masked against power analysis attacks[C]. 2006 International Conference on Field Programmable Logic and Applications, Madrid, Spain, 2006: 1–4. doi: 10.1109/FPL.2006.311315.
    AKKAR M L and GIRAUD C. An implementation of DES and AES, secure against some attacks[C]. The 3rd International Workshop on Cryptographic Hardware and Embedded Systems, Paris, France, 2001: 309–318. doi: 10.1007/3-540-44709-1_26.
    AKKAR M L and GOUBIN L. A generic protection against high-order differential power analysis[C]. The 10th International Workshop on Fast Software Encryption, Lund, Sweden, 2003: 192–205. doi: 10.1007/978-3-540-39887-5_15.
    AKKAR M L, BÉVAN R, and GOUBIN L. Two power analysis attacks against one-mask methods[C]. The 11th International Workshop on Fast Software Encryption, Delhi, India, 2004: 332–347. doi: 10.1007/978-3-540-25937-4_21.
    LÜ Jiqiang and HAN Yongfei. Enhanced DES implementation secure against high-order differential power analysis in smartcards[C]. The 10th Australasian Conference on Information Security and Privacy, Brisbane, Australia, 2005: 195–206. doi: 10.1007/11506157_17.
    PROUFF E and RIVAIN M. A generic method for secure SBox implementation[C]. The 8th International Workshop on Information Security Applications, Jeju Island, Korea, 2007: 227–244. doi: 10.1007/978-3-540-77535-5_17.
    RIVAIN M, DOTTAX E, and PROUFF E. Block ciphers implementations provably secure against second order side channel analysis[C]. The 15th International Workshop on Fast Software Encryption, Lausanne, Switzerland, 2008: 127–143. doi: 10.1007/978-3-540-71039-4_8.
    ITOH K, TAKENAKA M, and TORII N. DPA countermeasure based on the “masking method”[C]. The 4th International Conference on Information Security and Cryptology—ICISC 2001, Seoul, Korea, 2002: 440–456. doi: 10.1007/3-540-45861-1_33.
    MAGHREBI H, GUILLEY S, and DANGER J L. Leakage squeezing countermeasure against high-order attacks[C]. The 5th IFIP International Workshop on Information Security Theory and Practice. Security and Privacy of Mobile Devices in Wireless Communication, Heraklion, Greece, 2011: 208–223. doi: 10.1007/978-3-642-21040-2_14.
    TANG Ming, QIU Zhenlong, GAO Si et al. Polar differential power attacks and evaluation[J]. Science China Information Sciences, 2012, 55(7): 1588–1604. doi: 10.1007/s11432-012-4588-5
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  1759
  • HTML全文浏览量:  962
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-01
  • 修回日期:  2020-06-06
  • 网络出版日期:  2020-07-07
  • 刊出日期:  2020-08-18

目录

    /

    返回文章
    返回