高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

荷控忆阻器记忆衰退的寄生效应

沈怡然 李付鹏 王光义

沈怡然, 李付鹏, 王光义. 荷控忆阻器记忆衰退的寄生效应[J]. 电子与信息学报, 2020, 42(4): 844-850. doi: 10.11999/JEIT190865
引用本文: 沈怡然, 李付鹏, 王光义. 荷控忆阻器记忆衰退的寄生效应[J]. 电子与信息学报, 2020, 42(4): 844-850. doi: 10.11999/JEIT190865
Yiran SHEN, Fupeng LI, Guangyi WANG. The Role of Parasitic Elements in Fading Memory of A Charge Controlled Memristor[J]. Journal of Electronics & Information Technology, 2020, 42(4): 844-850. doi: 10.11999/JEIT190865
Citation: Yiran SHEN, Fupeng LI, Guangyi WANG. The Role of Parasitic Elements in Fading Memory of A Charge Controlled Memristor[J]. Journal of Electronics & Information Technology, 2020, 42(4): 844-850. doi: 10.11999/JEIT190865

荷控忆阻器记忆衰退的寄生效应

doi: 10.11999/JEIT190865
基金项目: 国家自然科学基金(61771176,61801154)
详细信息
    作者简介:

    沈怡然:男,1979年生,实验师,研究方向为非线性电路与系统

    李付鹏:男,1986年生,助理实验师,研究方向为非线性电路与系统

    王光义:男,1957年生,教授,研究方向为非线性电路与系统

    通讯作者:

    李付鹏 lfp_99@hdu.edu.cn

  • 中图分类号: TN601

The Role of Parasitic Elements in Fading Memory of A Charge Controlled Memristor

Funds: The National Natural Science Foundation of China(61771176, 61801154)
  • 摘要: 荷控忆阻器在寄生元件存在的情况下,可能发生记忆衰退现象。该文采用忆阻器动力学路线图和仿真的方法,研究了忆阻器寄生电阻和寄生电容对其动力学特性的影响。理论和仿真分析发现,理想荷控(流控)忆阻器在直流和交流激励下,寄生电阻或寄生电容单独存在时不发生记忆衰退现象,但在寄生电阻和寄生电容同时存在的情况下会发生记忆衰退,其机理是寄生元件形成放电通路,从而导致荷控忆阻器产生了记忆衰退。
  • 图  1  记忆衰退概念示意图

    图  2  理想荷控忆阻器DRM

    图  3  理想荷控忆阻器在不同初值条件下的DC响应

    图  4  理想荷控忆阻器在不同初值条件下的AC响应

    图  5  双音测试和三角波测试

    图  6  理想荷控忆阻器和寄生电阻

    图  7  考虑寄生电阻后的DRM

    图  8  理想荷控忆阻器和寄生电容

    图  9  寄生电容条件下忆阻系统的DC和AC响应

    图  10  考虑寄生电阻和寄生电容时的理想荷控忆阻器

    图  11  寄生电阻和电容同时存在时忆阻系统的DC和AC响应

  • CHUA L O. Memristor—the missing circuit element[J]. IEEE Transactions on Circuit Theory, 1971, 18(5): 507–519. doi: 10.1109/TCT.1971.1083337
    CHUA L O and KANG S M. Memristive devices and systems[J]. Proceedings of the IEEE, 1976, 64(2): 209–223. doi: 10.1109/PROC.1976.10092
    STRUKOV D B, SNIDER G S, STEWART D R, et al. The missing memristor found[J]. Nature, 2008, 453(7191): 80–83. doi: 10.1038/nature06932
    TOUR J M and HE Tao. Electronics: The fourth element[J]. Nature, 2008, 453(7191): 42–43. doi: 10.1038/453042a
    YANG J J, PICKETT M D, LI Xuema, et al. Memristive switching mechanism for metal/oxide/metal nanodevices[J]. Nature Nanotechnology, 2008, 3(7): 429–433. doi: 10.1038/nnano.2008.160
    VONGEHR S and MENG Xiangkang. The missing memristor has not been found[J]. Scientific Reports, 2015, 5(1): 11657. doi: 10.1038/srep11657
    ASCOLI A, TETZLAFF R, CHUA L O, et al. History erase effect in a non-volatile Memristor[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2016, 63(3): 389–400. doi: 10.1109/TCSI.2016.2525043
    ASCOLI A, TETZLAFF R, CHUA L O, et al. Fading memory effects in a memristor for cellular nanoscale network applications[C]. The 2016 Design, Automation & Test in Europe Conference & Exhibition, Dresden, Germany, 2016: 421–425.
    MENZEL S, WASER R, SIEMON A, et al. On the origin of the fading memory effect in ReRAMs[C]. The 27th IEEE 2017 International Symposium on Power and Timing Modeling, Optimization and Simulation, Thessaloniki, Greece, 2017: 1–5.
    ASCOLI A, TETZLAFF R, and CHUA L O. The first ever real Bistable Memristors—Part I: Theoretical insights on local fading memory[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2016, 63(12): 1091–1095. doi: 10.1109/TCSII.2016.2604567
    ASCOLI A, TETZLAFF R, and CHUA L O. The first ever real bistable memristors -- Part Ⅱ: Design and analysis of a local fading memory system[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2016, 63(12): 1096–1100. doi: 10.1109/TCSII.2016.2613560
    ASCOLI A, TETZLAFF R, and MENZEL S. Exploring the dynamics of real-world Memristors on the basis of circuit theoretic model predictions[J]. IEEE Circuits and Systems Magazine, 2018, 18(2): 48–76. doi: 10.1109/MCAS.2018.2821760
    CHUA L. Five non-volatile memristor enigmas solved[J]. Applied Physics A, 2018, 124(8): Artical No. 563. doi: 10.1007/s00339-018-1971-0
    BOYD S and CHUA L. Fading memory and the problem of approximating nonlinear operators with Volterra series[J]. IEEE Transactions on Circuits and Systems, 1985, 32(11): 1150–1161. doi: 10.1109/TCS.1985.1085649
    CHUA L. Everything you wish to know about memristors but are afraid to ask[J]. Radioengineering, 2015, 24(2): 319–368. doi: 10.13164/re.2015.0319
    ASCOLI A, SLESAZECK S, MAHNE H, et al. Nonlinear dynamics of a locally-active memristor[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2015, 62(4): 1165–1174. doi: 10.1109/TCSI.2015.2413152
    CHUA L O. 3 new theorems on memristors[C]. The 7th Workshop and MC Meeting Memristors-Devices, Models, Circuits, Systems and Applications, Dubrovnik, Croatia, 2018.
    CORINTO F, ASCOLI A, and GILLI M. Analysis of current-voltage characteristics for memristive elements in pattern recognition systems[J]. International Journal of Circuit Theory and Applications, 2012, 40(12): 1277–1320. doi: 10.1002/cta.1804
  • 加载中
图(11)
计量
  • 文章访问数:  2314
  • HTML全文浏览量:  864
  • PDF下载量:  124
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-01
  • 修回日期:  2019-12-26
  • 网络出版日期:  2020-01-06
  • 刊出日期:  2020-06-04

目录

    /

    返回文章
    返回