高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脉冲噪声下一种自适应ASR稳健滤波方法

金艳 李亚刚 姬红兵

金艳, 李亚刚, 姬红兵. 脉冲噪声下一种自适应ASR稳健滤波方法[J]. 电子与信息学报, 2021, 43(2): 296-302. doi: 10.11999/JEIT190793
引用本文: 金艳, 李亚刚, 姬红兵. 脉冲噪声下一种自适应ASR稳健滤波方法[J]. 电子与信息学报, 2021, 43(2): 296-302. doi: 10.11999/JEIT190793
Yan JIN, Yagang LI, Hongbing JI. Adaptive ASR Filtering in Impulsive Noise Environments[J]. Journal of Electronics & Information Technology, 2021, 43(2): 296-302. doi: 10.11999/JEIT190793
Citation: Yan JIN, Yagang LI, Hongbing JI. Adaptive ASR Filtering in Impulsive Noise Environments[J]. Journal of Electronics & Information Technology, 2021, 43(2): 296-302. doi: 10.11999/JEIT190793

脉冲噪声下一种自适应ASR稳健滤波方法

doi: 10.11999/JEIT190793
基金项目: 中电集团研究所合作项目(HX01201712003),国家留学基金委项目(CSC201806965022)
详细信息
    作者简介:

    金艳:女,1978年生,副教授,博士,主要研究方向为现代信号处理、非高斯信号处理、信号检测与估计等

    李亚刚:男,1994年生,硕士生,主要研究方向为非高斯噪声下信号处理方法

    姬红兵:男,1963年生,教授,博士生导师,主要研究方向为微弱信号检测与参数估计、智能信号处理与模式识别等

    通讯作者:

    李亚刚 18710890475@163.com

  • 中图分类号: TN911.7

Adaptive ASR Filtering in Impulsive Noise Environments

Funds: China Electronics Technology Group Corporation Project (CSC201806965022), The China Scholarship Council Project (HX01201712003)
  • 摘要: 在基于alpha稳定分布模型的脉冲噪声处理领域中,经典滤波方法多采用Cauchy分布和Meridian分布等alpha稳定分布特例,其脉冲抑制能力有限。对此,该文基于M估计理论和$ {\rm{AS}}\alpha {\rm{S}} $分布模型,构造稳健滤波代价函数簇,提出ASR稳健滤波方法,利用影响函数分析其稳健性,构建稳健滤波的统一理论基础,将Myriad滤波,Meridian滤波统一起来。给出线性度参数表达式,并采用阈值选择法实现自适应选择。此外,提出AS-FT滤波方法,以线性调频(LFM)信号在脉冲噪声下的参数估计为例,表明ASR滤波方法的稳健性。仿真实验表明,ASR稳健滤波方法,与中值滤波、Myriad滤波、分数低阶等传统的稳健滤波方法相比,具有良好的鲁棒性。
  • 图  1  均值滤波,中值滤波,Myriad, Meridian滤波影响函数

    图  2  ${\rm{AS}}\alpha {\rm{S}}$分布与对称$\alpha $稳定分布PDF对比图

    图  3  影响函数簇

    图  4  ${\rm{AS}}\alpha {\rm{S}}$分布最优线性参数曲线图

    图  5  ${\rm{AS}}\alpha {\rm{S}}$分布下PCK均值图

    图  6  各种方法下时频分布图

    图  7  $\alpha $= 0.8 LFM信号参数归一化均方误差图

    表  1  常用滤波器的代价函数与影响函数

    均值滤波中值滤波Myriad滤波Meridian滤波
    PDF $p(x)$${{\exp ( - {x^2})} / {\sqrt {2\pi } }}$${ {\exp ( - \left| x \right|)} / {2\pi } }$${\gamma / {[\pi ({\gamma ^2} + {x^2})]}}$${{\delta / {2(\delta + \left| x \right|}}^2})$
    代价函数 $F(e)$${e^2}$$\left| e \right|$$\log ({e^2} + {\gamma ^2})$$\log \{ \delta + \left| e \right|\} $
    影响函数 $\varphi (e)$$2e$${\rm{sgn}} (e)$$2e/({\gamma ^2} + {e^2})$${\rm{sgn}} (e)/(\delta + |e|)$
    下载: 导出CSV
  • TALEBI S P and MANDIC D P. Distributed particle filtering of α-stable signals[J]. IEEE Signal Processing Letters, 2017, 24(12): 1862–1866. doi: 10.1109/LSP.2017.2761182
    ZHANG Jinfen, QIU Tianshuang, WANG Peng, et al. A novel cauchy score function based DOA estimation method under alpha-stable noise environments[J]. Signal Processing, 2017, 138: 98–105. doi: 10.1016/j.sigpro.2017.03.014
    杨帆, 贾辉, 刘宝树, 等. α稳定脉冲噪声下宽带电力线通信系统性能分析[J]. 电子与信息学报, 2019, 41(6): 1374–1380. doi: 10.11999/JEIT180261

    YANG Fan, JIA Hui, LIU Baoshu, et al. Performance analysis of broadband power-line communications systems under the alpha-stable impulsive noise[J]. Journal of Electronics &Information Technology, 2019, 41(6): 1374–1380. doi: 10.11999/JEIT180261
    RAMIREZ J M and PAREDES J L. Recursive weighted myriad based filters and their optimizations[J]. IEEE Transactions on Signal Processing, 2016, 64(15): 4027–4039. doi: 10.1109/TSP.2016.2557304
    ZORLU H. Optimization of weighted myriad filters with differential evolution algorithm[J]. AEU-International Journal of Electronics and Communications, 2017, 77: 1–9. doi: 10.1016/j.aeue.2017.04.020
    KURKIN D, ROENKO A, LUKIN V, et al. An adaptive meridian estimator[C]. 2011 Microwaves, Radar and Remote Sensing Symposium, Kiev, Ukraine, 2011: 301–304. doi: 10.1109/MRRS.2011.6053660.
    金艳, 胡碧昕, 姬红兵. α稳定分布噪声下一种稳健加权滤波的统一框架[J]. 系统工程与电子技术, 2016, 38(10): 2221–2227. doi: 10.3969/j.issn.1001-506X.2016.10.01

    JIN Yan, HU Bixin, and JI Hongbing. Unified framework of robust weighted filtering in α stable noise[J]. Systems Engineering and Electronics, 2016, 38(10): 2221–2227. doi: 10.3969/j.issn.1001-506X.2016.10.01
    金艳, 段鹏婷, 姬红兵. 复杂噪声环境下基于LVD的LFM信号参数估计[J]. 电子与信息学报, 2014, 36(5): 1106–1112. doi: 10.3724/SP.J.1146.2013.01013

    JIN Yan, DUAN Pengting, and JI Hongbing. Parameter estimation of LFM signals based on LVD in complicated noise environments[J]. Journal of Electronics &Information Technology, 2014, 36(5): 1106–1112. doi: 10.3724/SP.J.1146.2013.01013
    张贤达. 现代信号处理[M]. 北京: 清华大学出版社, 1995.

    ZHANG Xianda. Modern Signal Processing[M]. Beijing: Tsinghua University Press, 1995.
    王志洋. Chirp信号参数估计方法的研究[D]. [硕士论文], 吉林大学, 2013.

    WANG Zhiyang. Study on parameter estimation of chirp signal[D]. [Master dissertation], Jilin University, 2013.
    RUPPERT D. Robust statistics: The approach based on influence functions[J]. Technometrics, 1987, 29(2): 240–241. doi: 10.1080/00401706.1987.10488218
    AYSAL T C and BARNER K E. Meridian filtering for robust signal processing[J]. IEEE Transactions on Signal Processing, 2007, 55(8): 3949–3962. doi: 10.1109/tsp.2007.894383
    CHEN Yunfei and CHEN Jiming. Novel SαS PDF approximations and their applications in wireless signal detection[J]. IEEE Transactions on Wireless Communications, 2015, 14(2): 1080–1091. doi: 10.1109/TWC.2014.2364181
    KALLURI S and ARCE G R. Adaptive weighted myriad filter algorithms for robust signal processing in α-stable noise environments[J]. IEEE Transactions on Signal Processing, 1998, 46(2): 322–334. doi: 10.1109/78.655418
    GONZALEZ J G and ARCE G R. Optimality of the myriad filter in practical impulsive-noise environments[J]. IEEE Transactions on Signal Processing, 2001, 49(2): 438–441. doi: 10.1109/78.902126
    SUORANTA R. Amplitude domain approach to digital filtering: Therory and applications of L-filters[D]. [Ph.D. dissertation], Technical Research Center of Finland, 1995: 199.
    DJUROVIĆ I, LUKIN V V, and ROENKO A A. Removal of α-stable noise in frequency modulated signals using robust DFT forms[J]. Telecommunications and Radio Engineering, 2004, 61(7/12): 574–590. doi: 10.1615/TelecomRadEng.v61.i7.20
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  920
  • HTML全文浏览量:  322
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-16
  • 修回日期:  2020-08-26
  • 网络出版日期:  2020-12-11
  • 刊出日期:  2021-02-23

目录

    /

    返回文章
    返回