Loading [MathJax]/jax/output/HTML-CSS/jax.js
高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

正交多用户短参考差分混沌移位键控通信系统性能分析

贺利芳 吴雪霜 张天骐

贺利芳, 吴雪霜, 张天骐. 正交多用户短参考差分混沌移位键控通信系统性能分析[J]. 电子与信息学报, 2020, 42(10): 2445-2453. doi: 10.11999/JEIT190778
引用本文: 贺利芳, 吴雪霜, 张天骐. 正交多用户短参考差分混沌移位键控通信系统性能分析[J]. 电子与信息学报, 2020, 42(10): 2445-2453. doi: 10.11999/JEIT190778
Lifang HE, Xueshuang WU, Tianqi ZHANG. Performance Analysis of Orthogonal Multiuser Short Reference Differential Chaos Shift Keying Communication System[J]. Journal of Electronics & Information Technology, 2020, 42(10): 2445-2453. doi: 10.11999/JEIT190778
Citation: Lifang HE, Xueshuang WU, Tianqi ZHANG. Performance Analysis of Orthogonal Multiuser Short Reference Differential Chaos Shift Keying Communication System[J]. Journal of Electronics & Information Technology, 2020, 42(10): 2445-2453. doi: 10.11999/JEIT190778

正交多用户短参考差分混沌移位键控通信系统性能分析

doi: 10.11999/JEIT190778
基金项目: 国家自然科学基金(61771085, 61371164),重庆市教育委员会科研项目(KJQN201900601, KJ1600407)
详细信息
    作者简介:

    贺利芳:女,1979年生,硕士,副教授,研究方向为混沌保密通信、微弱信号检测

    吴雪霜:女,1996年生,硕士生,研究方向为混沌保密通信

    张天骐:男,1971年生,博士后,教授,研究方向为扩频信号的盲处理、语音信号处理、神经网络实现以及信号的同步处理

    通讯作者:

    吴雪霜 3319154122@qq.com

  • 中图分类号: TN911

Performance Analysis of Orthogonal Multiuser Short Reference Differential Chaos Shift Keying Communication System

Funds: The National Natural Science Foundation of China (61771085, 61371164), The Research Project of Chongqing Educational Commission (KJQN201900601, KJ1600407)
  • 摘要: 针对差分混沌移位键控系统传输速率和能量效率低的缺点,该文提出一种正交多用户短参考差分混沌移位键控(OMU-SR-DCSK)通信系统。系统将参考信号长度缩短为每个信息承载信号长度的1/P,并在参考时隙后增加了两路连续的信息时隙,每个信息时隙内,N个用户信息在Walsh码正交特性作用下同时传输,利用Walsh码的正交特性可完全消除用户间干扰,从而改善系统误码性能。推导了OMU-SR-DCSK在加性高斯白噪声(AWGN)信道和Rayleigh衰落信道下的理论比特误码率(BER)公式并进行了仿真。仿真结果和理论推导的吻合证明了理论推导的正确性,从而为OMU-SR-DCSK应用于多用户串行传输系统提供了理论依据。
  • 20世纪90年代,混沌同步现象首次被发现存在于两个耦合的系统中,这一突破性的发现为混沌理论应用于通信领域奠定了基础。此后,国内外众多学者开始研究混沌理论在通信领域的应用,混沌通信技术成为非线性动力学系统中的一个重要应用分支。混沌信号产生方式简单,具有初始条件极度敏感性、优良的频谱特性、高度随机性、非周期性以及良好的自(互)相关性等特性[1,2],在保密通信中具有较大应用价值[3-6]

    Kolumban等人于1996年提出第1种非相干混沌数字解调技术—差分混沌移位键控(Differential Chaos Shift Keying, DCSK)技术;后又针对DCSK中发送信号比特能量不恒定的问题,提出调频DCSK(Frequency Modulated DCSK, FM-DCSK)技术。DCSK和FM-DCSK都采用传输参考(Transmitted-Reference, T-R)模式,分时隙发送参考信号和信息信号,因此具有较好的误码性能,但也造成了系统的传输速率极低[7,8]。针对传输速率低的缺点,文献[9-12]以DCSK和FM-DCSK为基础提出改进方案,虽提高了传输速率,但也增加了系统复杂度。文献[13]以高效差分混沌移位键控(High Efficiency Differential Chaos Shift Keying, HE-DCSK)系统为基础进行改进,提出VHE-DCSK(Very High Efficiency Differential Chaos Shift Keying)系统,将信息信号延迟不同时间从而实现多用户传输。文献[14]提出多载波差分混沌移位键控(MultiCarrier Differential Chaos Shift Keying, MC-DCSK)系统,通过使用多个不同中心频率的载波来实现信息比特的并行传输。文献[15]提出短参倍速差分混沌键控(Short Reference Multifold Rate Differential Chaos Shift Keying, SRMR-DCSK)系统,增加单个信息时隙内传输的比特数用于提升系统的传输速率。

    Walsh码具有良好的正交特性和产生方式简单等优点,且Walsh码的引入不会过多地增加系统复杂度。为有效提升传输速率和能量效率,本文结合Walsh码的优良特性,提出一种OMU-SR-DCSK系统,将参考时隙缩短为信息时隙的1/P,并在参考时隙后增加两路连续的信息时隙,使得系统发送一帧共可传输2Nbit用户信息,Walsh码保证用户间完全正交,完全消除了相关运算时产生的用户间干扰,改善了系统误码性能。

    Hadamard矩阵中只包含“+1”和“–1”两种元素,Walsh函数码是一组同步正交码,故可由2n阶Hadamard矩阵产生,码序列构造为[16]

    W2n=[W2(n1)W2(n1)W2(n1)W2(n1)] (1)

    式(1)中,n=0,1,···, W20=[1]。矩阵的每行代表一个长度P 的Walsh码序列,P=2n

    图1为DCSK和OMU-SR-DCSK系统第k帧结构对比图。相比于DCSK系统,OMU-SR-DCSK系统将参考信号长度缩短为R(R=β/P),有效节省了时间和能量,其中,将扩频因子β定义为比特周期Ts和码片周期Tc的比值,为便于后文理论公式的推导,取Tc=1;此外,还将信息时隙由1路扩展为2路,每个信息时隙内,用户之间乘以不同的Walsh码wi,j加以区分,使得系统发送1帧共可传输2Nbit用户信息,从而提高了传输速率和能量效率,Walsh码的引入消除了用户间干扰项,改善了系统误码性能。

    图 1  OMU-SR-DCSK和DCSK系统第k帧结构对比图

    图2为OMU-SR-DCSK系统的发送机结构。首先由混沌信号发生器产生一段R长度的混沌序列xi,k,经重复P次后,其长度变为β。然后将这段长度为β的混沌序列延迟R,用于传输前N个用户的信息比特,每个用户分别与wi,j(j=1,2,···,N)相乘,后由加法器将前N个用户信息加和在第1个信息时隙内传输;同理,将这段长度为β的混沌序列延迟(P+1)R,用于传输后N个用户的信息比特,为每个用户分配一段Walsh码序列wi,j,后将这N个用户信息加和在第2个信息时隙内传输。则第k帧的发送信号si,k表达式为

    图 2  OMU-SR-DCSK系统发送机结构
    si,k={xi,k,0<iRNj=1wi,jbjxiR,k,R<i(P+1)RNj=1wi,jbN+jxi(P+1)R,k,  (P+1)R<i(2P+1)RxiR,kx0,k,od(R) (2)

    式(2)中,wi,j为第j和第N+j个用户所乘的Walsh码序列,bjbN+j分别为第j和第N+j个用户的信息比特,由si,k表达式计算平均比特能量Eb,OMUSRDCSK

    Eb,OMUSRDCSK=(1+2NP)RTcE(x2i,k)/(2N) (3)

    图3为OMU-SR-DCSK的接收机结构。解调端将接收信号ri,k延迟R,用于分离出前N个用户信息的参考信号;同理,延迟(P+1)R用于分离出后N个用户信息的参考信号;若要解调出信息比特bu(bN+u),需将接收信号ri,k与对应的Walsh码wi,u相乘,再与参考信号进行P次相关运算,则第k帧第u(u=1,2,···,N)个用户和第N+u个用户的相关器输出值ZuZN+u表示为

    图 3  OMU-SR-DCSK系统接收机结构
    Zu=Pp=1Ri=1ri,kriR,kwi,u (4)
    ZN+u=Pp=1Ri=1ri,kri(P+1)R,kwi,u (5)

    相关运算值Zu(ZN+u)经相关器输出后,再送入门限判决器进行判决,根据式(6)的判决准则,最终可恢复出信息信号bu(bN+u)。

    bu={+1,Zu01,Zu<0,bN+u={+1,ZN+u01,ZN+u<0 (6)

    2阶Chebyshev映射作为最常用的产生混沌序列的混沌映射方程之一,且利用该映射产生的混沌序列拥有良好的数学统计特性。因此,OMU-SR-DCSK系统采用2阶Chebyshev映射产生混沌序列xi,k,并将其归一化。归一化后的混沌序列其均值为0,方差为1。

    多径Rayleigh衰落信道更接近于实际应用中的传输信道,因此采用两径Rayleigh衰落信道模型作为OMU-SR-DCSK系统信道模型,两径Rayleigh衰落信道模型如图4所示。

    图 4  两径Rayleigh衰落信道模型

    其中,ni,k是均值为0,方差为N0/2的加性高斯白噪声,τ是两个独立信道之间的延迟,α1α2代表两个独立的、服从Rayleigh分布的信道随机变量,其概率密度函数表示为

    f(α|σ)=(α/σ2)eα2/(2σ2),α>0 (7)

    图4中Rayleigh信道传输后,接收信号ri,k的表达式可表示为

    ri,k=α1si,k+α2siτ,k+ni,k (8)

    由于第k帧第u个和第N+u个用户的解调方式相同,故以解调第k帧第u个用户的信息比特为例,分析OMU-SR-DCSK系统理论BER公式的推导过程。则相关运算值Zu的表达式可进一步表示为

    Zu=Pp=1Ri=1(ri,kriR,kwi,u)=Pp=1Ri=1((α1Nj=1wi,jbjxiR,k+α2Nj=1wi,jbjxiRτ,k+ni,P,k)(α1xiR,k+α2xiRτ,k+niR,k)wi,u)=A+B+C (9)
    A=Pp=1Ri=1(α21bux2iR,k+α22bux2iRτ,k) (10)
    B=Pp=1Ri=1(ni,P,kniR,kwi,u) (11)
    C=Pp=1Ri=1(α1xiR,kni,P,k+α21Nj=1,juwi,jbjxiR,kxiR,kwi,u+α22Nj=1,juwi,jbjxiRτ,kxiRτ,kwi,u+α2xiRτ,kni,P,k+α1α2Nj=1,juwi,jbjxiR,kxiRτ,kwi,u+α1Nj=1wi,jbjxiR,kniR,kwi,u+α2Nj=1wi,jbjxiRτ,kniR,kwi,u+2α1α2buxiR,kxiRτ,k+α1α2Nj=1,juwi,jbjxiRτ,kxiR,kwi,u) (12)

    假设Rayleigh衰落信道的延迟τ远远小于符号间隔,忽略不计τ的影响,有Ri=1xi,kxiτ,k0; ni,kni,p,k具有相同的统计特性,都是均值为0、方差为N0/2的高斯白噪声,其瞬时值服从高斯分布;ni,kxi,k之间相互独立,且当ij时,ni,knj,k之间也相互独立;系统等概率发送二进制信息“+1”和“–1”。

    基于以上假设,当扩频因子足够大时,Zu近似服从高斯分布,故采用高斯近似法推导OMU-SR-DCSK在Rayleigh衰落信道和AWGN信道下的理论BER公式,对式(9)计算均值和方差得

    E[Zu]=E[A]+E[B]+E[C]=(α21+α22)PR (13)
    Var[Zu]=Var[A]+Var[B]+Var[C]=12(α21+α22)(NP+1)PRN0+14PRN20 (14)
    BER[Zu]=12Pr(Zu<0|bu=+1)+12Pr(Zu0|bu=1)=12erfc(|E[Zu]|2Var[Zu]) (15)

    其中,E[]表示数学期望运算,Var[]表示方差运算,erfc(x)=2xeμ2dμ/π为互补误差函数。将式(13)和式(14)代入式(15),计算第k帧第u个用户的BER公式为

    BER(Zu)=12erfc([|E[Zu]|2Var[Zu]])=12erfc([(NP+1)(2NP+1)2NP(α21+α22)(EbN0)1+(2NP+1)2R8PN2(α21+α22)2(EbN0)2]12) (16)

    从而可得到OMU-SR-DCSK系统的瞬时BER公式为

    BER(α1,α2)=12erfc([|E[Zj]|2Var[Zj]])=12erfc([(NP+1)(2NP+1)2NP(α21+α22)(EbN0)1+(2NP+1)2R8PN2(α21+α22)2(EbN0)2]12) (17)

    γ1=α21(Eb/N0),γ2=α22(Eb/N0),γb=γ1+γ2,则式(17)可进一步化简为

    BER(γb)=12erfc([(NP+1)(2NP+1)2NP(γb)1+(2NP+1)2R8PN2(γb)2]12) (18)

    ˉγ1=E[γ1]=(Eb/N0)E[α21],ˉγ2=E[γ2]=(Eb/N0)E[α22], ˉγ1ˉγ2服从式(19)的卡方分布

    f(γ)=eγ/ˉγ/ˉγ,γ0 (19)

    因此γb=γ1+γ2服从式(20)的卡方分布

    f(γb)={(eγb/ˉγ1γb)/ˉγ21,E[α21]=E[α22](eγb/ˉγ1eγb/ˉγ2)/(ˉγ1γ2)E[α21]E[α22] (20)

    由于信道参数是持续变化的,因此采用式(21)得到OMU-SR-DCSK在Rayleigh衰落信道下的BER公式为

    BER=0BER(γb)f(γb)dγb=012erfc([(NP+1)(2NP+1)2NP(γb)1+(2NP+1)2R8PN2(γb)2]12)f(γb)dγb (21)

    令式(17)中α1=1,α2=0,得到AWGN信道下的BER公式为

    BER=12erfc([(NP+1)(2NP+1)2NP(EbN0)1+(2NP+1)2R8PN2(EbN0)2]12) (22)

    计算OMU-SR-DCSK和DCSK的传输速率ROMUSRDCSK=2N/((R+2β)Tc)RDCSK=1/(2βTc),平均比特能量Eb,OMUSRDCSK=(1+2NP)RTcE(x2i,k)/(2N)Eb,DCSK=2βTcE(x2i,k),并分别将其代入式(23)和式(24),得到OMU-SR-DCSK相比于DCSK的传输速率提升百分比Rd和节省比特能量的百分比EB

    Rd=ROMUSRDCSKRDCSKRDCSK×100%=4Nβ(2β+R)2β+R×100% (23)
    EB=Eb,DCSKEb,OMU-SR-DCSKEb,DCSK×100%=4Nβ(1+2NP)R4Nβ×100% (24)

    图5图6中分别分析了[P,N]=[4,2],[4,4]时,RdEB的曲线。曲线表明:OMU-SR-DCSK相比于DCSK,极大程度上提升了传输速率,节约了比特能量。从式(23)和式(24)可以看出:当R=β时,传输速率提高百分比Rd只与用户数2N有关,比特能量节约百分比EB只与用户数2N和重复次数P有关。

    图 5  传输速率提升百分比Rd
    图 6  比特能量节省百分比EB

    图7图8分别为DCSK和OMU-SR-DCSK的平方幅度谱。图7中,在归一化的比特频率为奇数时,DCSK的平方幅度为零,这是由于DCSK的信息信号只与参考信号同相或反相,从而导致了DCSK的安全性很低。而OMU-SR-DCSK的信息信号是N个信号的加和,且其参考时隙和信息时隙不等长,从图8中也可以发现,OMU-SR-DCSK的平方幅度谱具有类噪声性,证实了OMU-SR-DCSK的安全性很高。

    图 7  DCSK的平方幅度谱
    图 8  OMU-SR-DCSK的平方幅度谱

    本节将在AWGN信道和两径Rayleigh衰落信道下对OMU-SR-DCSK系统进行仿真,验证理论BER公式推导的正确性,为确保仿真结果的准确性,仿真值均是在106次仿真结果取平均值的前提下得到的。

    图9为各项参数取值[R,N,P]=[64,2,2],[128,2,2],[256,2,2] 时,系统BER随Eb/N0变化的曲线,理论值和仿真值的良好契合验证了理论BER公式推导的准确无误性。图中显示R=64时系统BER明显优于R=128时的BER,这是由于R的增加导致信号间干扰增多,从而导致系统误码性能恶化。

    图 9  R不同时BER随Eb/N0变化的曲线

    图10[R,N,P]=[128,1,4],[128,2,4],[128,4,4]时,系统BER随Eb/N0变化的曲线。RP一定,在Eb/N010dB的情况下,不同N值对应的BER值基本吻合,而当Eb/N0>12dB时,BER随着N的增加而增加。据此可见:Eb/N0较低的情况下,用户数变化不足以影响BER,此时扩频因子和重复次数为主要决定因素,而Eb/N0较高的情况下,用户数成为误码性能恶化的主要影响因素。

    图 10  N不同时BER随Eb/N0变化的曲线

    图11[R,N,P]=[128,4,1],[128,4,2],[128,4,4]时,系统BER随Eb/N0变化的曲线。RN一定,当Eb/N06dB时,不同P值对应的BER值基本吻合,而当Eb/N0>7dB时,BER随着P的增加而增加。与N变化对BER的影响类似,在Eb/N0较低的情况下,P值变化对误码性能的影响微乎其微,扩频因子和用户数为主要决定因素,而在Eb/N0大于某个定值时,误码性能随着P值的增加呈现恶化的趋势。区别于N值变化对系统误码性能影响的是:重复次数的变化对系统误码性能的影响更为显著。

    图 11  P不同时BER随Eb/N0变化的曲线

    图12图13Eb/N0=10dB,14dB, NP取不同数值时,系统BER随R变化的曲线。根据图中曲线可以发现:Eb/N0越大误码性能越佳,且当Eb/N0一定时,系统误码性能随着R的增加呈现恶化的趋势,最后趋于一个定值,而P值变化会影响这一定值,N值变化却不会影响这一定值。

    图 12  Eb/N0,P不同时BER随R变化的曲线
    图 13  Eb/N0,N不同时BER随R变化的曲线

    表1中对比了OMU-SR-DCSK, SRMR-DCSK, VHE-DCSK和MC-DCSK系统的传输速率和能量效率,假设这几种系统的β都相等。与长参考系统VHE-DCSK和短参考系统SRMR-DCSK相比,OMU-SR-DCSK的能量效率和传输速率都较优,而与多用户并行传输系统MC-DCSK相比,OMU-SR-DCSK采用多用户串行传输的方法,其能量效率虽优于MC-DCSK,但传输速率却远低于MC-DCSK。

    表 1  OMU-SR-DCSK, SRMR-DCSK, VHE-DCSK和MC-DCSK系统的能量效率及传输速率
    系统名称传输速率(RB)能量效率(Eη)
    OMU-SR-DCSK2N/(R+2β)2Nβ/(R+2Nβ)
    SRMR-DCSKN/(R+β)Nβ/(R+Nβ)
    VHE-DCSKN/(2β)N/(1+N)
    MC-DCSKN/βN/(1+N)
    下载: 导出CSV 
    | 显示表格

    为进一步分析表1中对比的几种系统的误码性能,图14中对比了AWGN信道下这几种系统的BER曲线。假设所有系统传输的信息比特数都相等,且β也相等。观察图中BER曲线,当Eb/N011dB时,OMU-SR-DCSK, MC-DCSK和SRMR-DCSK的误码率基本相等,且都优于VHE-DCSK的误码率。但当Eb/N0>11dB时,MC-DCSK的误码性能最优,其次是OMU-SR-DCSK。虽然OMU-SR-DCSK的误码性能差于多用户并行传输系统,但是相比于其他两种多用户串行传输系统,其误码性能较优。

    图 14  AWNG信道下不同系统间误码性能对比

    本小节将在两径Rayleigh衰落信道下分析了OMU-SR-DCSK的误码性能。图15R不同时,两种不同增益情况下的OMU-SR-DCSK系统BER曲线,其中,情况1为等增益情况,平均信道增益取值为:E[|α1|2]=E[|α2|2]=1/2,情况2为非等增益的情况,平均信道增益取值为:E[|α1|2]=1/5,E[|α2|2]=4/5。与AWGN信道下仿真类似,BER随着R增大而增大,且等增益情况下系统误码性能总是优于非等增益情况下的误码性能。

    图 15  OMU-SR-DCSK系统在两种增益下的性能比较

    图16中对比了表1中几种系统的误码性能。当Eb/N0较小时,OMU-SR-DCSK和SRMR-DCSK的误码率基本相等,都略优于MC-DCSK。但随着信噪比的增加,MC-DCSK的误码率逐渐降低,最后都优于其他几种系统,与AWGN信道下的对比结果一致,相比于其他两种多用户串行传输系统,OMU-SR-DCSK的误码性能最优。

    图 16  不同系统在等增益情况下的性能比较

    本文提出的OMU-SR-DCSK缩短了参考信号的长度,虽然会造成信噪比降低,从而影响系统的误码性能,但同时也提升了系统的传输速率、能量效率和安全性。此外,通过引入构造简单的Walsh码消除了用户间干扰,改善了OMU-SR-DCSK的误码性能,弥补了信噪比降低对系统误码性能造成的影响。通过仿真验证了OMU-SR-DCSK在传输速率和能量效率方面的优势,从而为其应用于多用户串行传输系统提供了理论依据。本文只分析了两路延迟线的情况,后续可扩展为M条延迟线,更大程度上提升系统的传输速率和能量效率;此外,将OMU-SR-DCSK与多载波技术结合,实现多用户并行传输也是后续需要研究的内容。

  • 图  1  OMU-SR-DCSK和DCSK系统第k帧结构对比图

    图  2  OMU-SR-DCSK系统发送机结构

    图  3  OMU-SR-DCSK系统接收机结构

    图  4  两径Rayleigh衰落信道模型

    图  5  传输速率提升百分比Rd

    图  6  比特能量节省百分比EB

    图  7  DCSK的平方幅度谱

    图  8  OMU-SR-DCSK的平方幅度谱

    图  9  R不同时BER随Eb/N0变化的曲线

    图  10  N不同时BER随Eb/N0变化的曲线

    图  11  P不同时BER随Eb/N0变化的曲线

    图  12  Eb/N0,P不同时BER随R变化的曲线

    图  13  Eb/N0,N不同时BER随R变化的曲线

    图  14  AWNG信道下不同系统间误码性能对比

    图  15  OMU-SR-DCSK系统在两种增益下的性能比较

    图  16  不同系统在等增益情况下的性能比较

    表  1  OMU-SR-DCSK, SRMR-DCSK, VHE-DCSK和MC-DCSK系统的能量效率及传输速率

    系统名称传输速率(RB)能量效率(Eη)
    OMU-SR-DCSK2N/(R+2β)2Nβ/(R+2Nβ)
    SRMR-DCSKN/(R+β)Nβ/(R+Nβ)
    VHE-DCSKN/(2β)N/(1+N)
    MC-DCSKN/βN/(1+N)
    下载: 导出CSV
  • ÇICEK S, KOCAMAZ U E, and UYAROĞLU Y. Secure chaotic communication with Jerk chaotic system using sliding mode control method and its real circuit implementation[J]. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 2019, 43(3): 687–698. doi: 10.1007/s40998-019-00184-9
    ESCRIBANO F J, KADDOUM G, WAGEMAKERS A, et al. Design of a new differential chaos-shift-keying system for continuous mobility[J]. IEEE Transactions on Communications, 2016, 64(5): 2066–2078. doi: 10.1109/TCOMM.2016.2538236
    CAI Guofa, FANG Yi, HAN Guojun, et al. A new hierarchical M-ary DCSK communication system: Design and analysis[J]. IEEE Access, 2017, 5: 17414–17424. doi: 10.1109/ACCESS.2017.2740973
    KADDOUM G, TRAN H V, KONG Long, et al. Design of simultaneous wireless information and power transfer scheme for short reference DCSK communication systems[J]. IEEE Transactions on Communications, 2017, 65(1): 431–433. doi: 10.1109/TCOMM.2016.2619707
    HU Wei, WANG Lin, and KADDOUM G. Design and performance analysis of a differentially spatial modulated chaos shift keying modulation system[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2017, 64(11): 1302–1306. doi: 10.1109/TCSII.2017.2697456
    张琳, 徐位凯, 王琳, 等. 码复用差分混沌键控性能分析与同步算法[J]. 重庆邮电大学学报: 自然科学版, 2016, 28(3): 330–336.

    ZHANG Lin, XU Weikai, WANG Lin, et al. Performance analysis and synchronization algorithm for CS-DCSK system[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2016, 28(3): 330–336.
    YANG Hua and JIANG Guoping. High-efficiency differential-chaos-shift-keying scheme for chaos-based noncoherent communication[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2012, 59(5): 312–316. doi: 10.1109/TCSII.2012.2190859
    KOLUMBAN G and KIS G. Multipath performance of FM-DCSK chaotic communications system[C]. 2000 IEEE International Symposium on Circuits and Systems, Geneva, Switzerland, 2000: 433–436. doi: 10.1109/ISCAS.2000.858781.
    BAO Jiyu, XU Weikai, WANG Lin, et al. Performance analysis and sub-carriers power allocation for MC-QCSK[C]. 2015 International Conference on Wireless Communications & Signal Processing, Nanjing, China, 2015: 1–5. doi: 10.1109/WCSP.2015.7341173.
    张刚, 许嘉平, 张天骐. 基于希尔伯特变换的多用户DCSK通信系统性能分析[J]. 电子与信息学报, 2018, 40(11): 2744–2751. doi: 10.11999/JEIT180110

    ZHANG Gang, XU Jiaping, and ZHAGN Tianqi. Performance analyze for multiuser-DCSK communication system based on hilbert transform[J]. Journal of Electronics &Information Technology, 2018, 40(11): 2744–2751. doi: 10.11999/JEIT180110
    YANG Hua, JIANG Guoping, TANG W K S, et al. Multi-carrier differential chaos shift keying system with subcarriers allocation for noise reduction[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2018, 65(11): 1733–1777. doi: 10.1109/TCSII.2017.2752754
    张刚, 赵畅畅, 张天骐. 短参考正交多用户差分混沌键控方案的性能分析[J]. 电子与信息学报, 2019, 41(9): 2055–2062. doi: 10.11999/JEIT181038

    ZHANG Gang, ZHAO Changchang, and ZHANG Tianqi. Performance analysis of short reference orthogonal multiuser differential chaotic shift keying scheme[J]. Journal of Electronics &Information Technology, 2019, 41(9): 2055–2062. doi: 10.11999/JEIT181038
    TALEB F, BENDIMERAD F T, and ROVIRAS D. Very high efficiency differential chaos shift keying system[J]. IET Communications, 2016, 10(17): 2300–2307. doi: 10.1049/iet-com.2016.0411
    KADDOUM G, RICHARDSON F D, and GAGNON F. Design and analysis of a multi-carrier differential chaos shift keying communication system[J]. IEEE Transactions on Communications, 2013, 61(8): 3281–3291. doi: 10.1109/TCOMM.2013.071013.130225
    张刚, 郝怡曼, 张天骐. 短参倍速差分混沌键控系统[J]. 系统工程与电子技术, 2018, 40(1): 184–190. doi: 10.3969/j.issn.1001-506X.2018.01.27

    ZHANG Gang, HAO Yiman, and ZHANG Tianqi. Short reference multifold rate differential chaos shift keying[J]. Systems Engineering and Electronics, 2018, 40(1): 184–190. doi: 10.3969/j.issn.1001-506X.2018.01.27
    CAI Guofa, WANG Lin, and CHEN Guanrong. Capacity of the non-coherent DCSK system over Rayleigh fading channel[J]. IET Communications, 2016, 10(18): 2663–2669. doi: 10.1049/iet-com.2016.0487
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  2004
  • HTML全文浏览量:  730
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-09
  • 修回日期:  2020-06-03
  • 网络出版日期:  2020-06-26
  • 刊出日期:  2020-10-13

目录

/

返回文章
返回