高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

卫星物联网场景下基于节点选择的协作波束成形技术研究

席博 洪涛 张更新

席博, 洪涛, 张更新. 卫星物联网场景下基于节点选择的协作波束成形技术研究[J]. 电子与信息学报, 2020, 42(12): 2882-2890. doi: 10.11999/JEIT190707
引用本文: 席博, 洪涛, 张更新. 卫星物联网场景下基于节点选择的协作波束成形技术研究[J]. 电子与信息学报, 2020, 42(12): 2882-2890. doi: 10.11999/JEIT190707
Bo XI, Tao HONG, Gengxin ZHANG. Research on the Collaborative Beamforming Technique Based on the Node Selection for Satellite Internet of Things[J]. Journal of Electronics & Information Technology, 2020, 42(12): 2882-2890. doi: 10.11999/JEIT190707
Citation: Bo XI, Tao HONG, Gengxin ZHANG. Research on the Collaborative Beamforming Technique Based on the Node Selection for Satellite Internet of Things[J]. Journal of Electronics & Information Technology, 2020, 42(12): 2882-2890. doi: 10.11999/JEIT190707

卫星物联网场景下基于节点选择的协作波束成形技术研究

doi: 10.11999/JEIT190707
基金项目: 国家自然科学基金(91738201, 61801445, 61971440)
详细信息
    作者简介:

    席博:男,1996年生,硕博连读生,研究方向为卫星通信

    洪涛:男,1982年生,讲师,研究方向为多天线收发系统、卫星通信

    张更新:男,1967年生,教授,博士生导师,研究方向为卫星通信、深空通信、空间信息网络等

    通讯作者:

    洪涛 hongt@njupt.edu.cn

  • 中图分类号: TN92

Research on the Collaborative Beamforming Technique Based on the Node Selection for Satellite Internet of Things

Funds: The National Natural Science Foundation of China (91738201, 61801445, 61971440)
  • 摘要:

    针对卫星物联网(IoT)场景下信号长距离传输衰减大以及单个终端节点传输性能受限的问题,该文提出一种基于节点选择的协作波束成形算法,增强终端节点的传输能力。在实际终端位置信息存在误差的条件下,推导出了协作波束成形平均方向图函数,分析了不同系统参数对于协作波束成形平均方向图和瞬时方向图差异的影响。在此基础上,根据卫星物联网链路传输性能需求,提出一种区域分组优化的协作节点选择算法。仿真结果表明,相比于传统的分布式协作波束成形节点选择算法,该文提出的算法在实际的误差模型中旁瓣抑制和零陷生成方面具有更好的性能。

  • 图  1  卫星物联网场景下协作波束成形技术示意图

    图  2  节点选择模型示意图

    图  3  节点阈值随误码率变化曲线

    图  4  基于区域分组策略与基于虚拟阵列优化方向图对比

    图  5  不同参数时${C_{m(\phi )}}(z)$随门限功率z的变化曲线

    图  6  节点选择平均功率方向图和瞬时功率方向图对比

    图  7  区域分组与虚拟阵选择节点的${C_{m(\phi )}}(z)$对比

    图  8  分组策略算法与基于虚拟阵列算法的收敛性能对比

    图  9  区域分组与虚拟阵节点选择算法的PSLL性能对比

    表  1  区域分组节点选择算法

     ${\rm{List}}m$=[]:存放$[{A_m}\sim {A_{m + k - 1}}]$中节点集合;${\rm{List}}m'$=[]:存放$[{A_{M + m}}\sim {A_{M + m + k - 1}}]$中节点集合;
     ${\rm{List}}C$=[]:存放$[{A_m}\sim {A_{m + k - 1}}]$中用于协作传输节点集合;${\rm{List}}C'$=[]:存放$[{A_{M + m}}\sim {A_{M + m + k - 1}}]$中用于协作传输节点集合;
     ${\rm{List}}F$=[]:存放代价函数值的集合;初始随机产生$S$个节点:${P_s}({r_s},{\phi _s}),\;s = 1,2,···,S$;
     $S$:源节点覆盖节点数;$M$:分组对数;$N$:协作波束成形节点数;$E$:迭代次数;
      For $s$=1 to $S$ do
       For $m$=1 to $M$ do
        If ${\phi _s} \in [\phi {A_m}\sim \phi {A_{m + k - 1}}]$ then
         ${\rm{List}}m$=${\rm{List}}m$+${P_s}$;
        End
        If ${\phi _s} \in [\phi {A_{M + m}}\sim \phi {A_{M + m + k - 1}}]$ then
         ${\rm{List}}m'$=${\rm{List}}m'$+${P_s}$;
        End
       End
     End
     For $e$=1 to $E$ do
       For $m$=1 to $M$ do
        从${\rm{List}}m$中随机选择${{[N} / {\rm{2}}}]$或${{[(N + 1)} / {\rm{2}}}]$个节点放入${\rm{List}}C$中;
        从${\rm{List}}m'$中随机选择${{[N} / {\rm{2}}}]$或${{[(N + 1)} / {\rm{2}}}]$个节点放入${\rm{List}}C'$中;
        根据${\rm{List}}C$和${\rm{List}}C'$中的节点计算代价函数${f_m}$;
       End
       ${\rm{List}}F$=${\rm{List}}F + {f_m}$;
     End
     Find(min(${\rm{List}}F$(average)))$\xrightarrow{{}}$$\{ {A_{{\rm{best}}}}\sim {A_{{\rm{best}} + k - 1}},{A_{M + {\rm{best}}}}\sim {A_{M + {\rm{best}} + k - 1}}\} $。
    下载: 导出CSV

    表  2  仿真参数设计表

    参数
    卫星轨道高度$d$=600 km
    卫星天线增益${G_R}$=25 dBi
    卫星品质因数${G / T}$=5 ${\rm{dB}}{{\rm{K}}^{ - 1}}$
    空间传播损耗${L_f}$=168.7 dB
    频率2.6 GHz
    节点天线增益(全向天线)${G_s}$=0 dBi
    节点发射功率${P_s}$=10 dBm
    调制方式QPSK
    信息速率${R_b}$=2048 kbps
    无线传感器网络范围500$ \times $500 m2
    网络节点总数300
    源节点覆盖范围R=100 m,约60个左右
    定位误差$B$=1 m,(约10个波长)
    期望/非期望方向(600 km,${30^{ \circ} }$,${0^{ \circ} }$)/(600 km,${30^{ \circ} }$,${1^{ \circ} }$)
    下载: 导出CSV
  • CIONI S, DE GAUDENZI R, DEL RIO HERRERO O, et al. On the satellite role in the era of 5G massive machine type communications[J]. IEEE Network, 2018, 32(5): 54–61. doi: 10.1109/MNET.2018.1800024
    QU Zhicheng, ZHANG Gengxin, CAO Haotong, et al. LEO satellite constellation for internet of things[J]. IEEE Access, 2017, 5: 18391–18401. doi: 10.1109/Access.2017.2735988
    XIA Tingting, WANG M M, and YOU Xiaohu. Satellite Machine-type communication for maritime Internet of Things: An interference perspective[J]. IEEE Access, 2019, 7: 76404–76415. doi: 10.1109/Access.2019.2919253
    DE SANCTIS M, CIANCA E, ARANITI G, et al. Satellite communications supporting internet of remote things[J]. IEEE Internet of Things Journal, 2016, 3(1): 113–123. doi: 10.1109/JIOT.2015.2487046
    CHIEN W C, LAI C F, HOSSAIN M S, et al. Heterogeneous space and terrestrial integrated networks for IoT: Architecture and challenges[J]. IEEE Network, 2019, 33(1): 15–21. doi: 10.1109/MNET.2018.1800182
    MUDUMBAI R, BROWN III D R, MADHOW U, et al. Distributed transmit beamforming: Challenges and recent progress[J]. IEEE Communications Magazine, 2009, 47(2): 102–110. doi: 10.1109/MCOM.2009.4785387
    JAYAPRAKASAM S, RAHIM S K A, and LEOW C Y. Distributed and collaborative beamforming in wireless sensor networks: Classifications, trends, and research directions[J]. IEEE Communications Surveys & Tutorials, 2017, 19(4): 2092–2116. doi: 10.1109/COMST.2017.2720690
    OCHIAI H, MITRAN P, POOR H V, et al. Collaborative beamforming for distributed wireless ad hoc sensor networks[J]. IEEE Transactions on Signal Processing, 2005, 53(11): 4110–4124. doi: 10.1109/tsp.2005.857028
    AHMED M F A and VOROBYOV S A. Collaborative beamforming for wireless sensor networks with gaussian distributed sensor nodes[J]. IEEE Transactions on Wireless Communications, 2009, 8(2): 638–643. doi: 10.1109/TWC.2009.071339
    JAYAPRAKASAM S, ABDUL RAHIM S K, LEOW C Y, et al. Multiobjective beampattern optimization in collaborative beamforming via NSGA-II with selective distance[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(5): 2348–2357. doi: 10.1109/tap.2017.2684187
    AHMED M F A and VOROBYOV S A. Sidelobe control in collaborative beamforming via node selection[J]. IEEE Transactions on Signal Processing, 2010, 58(12): 6168–6180. doi: 10.1109/tsp.2010.2077631
    CHEN J C, WEN Chaokai, and WONG K K. An efficient sensor-node selection algorithm for sidelobe control in collaborative beamforming[J]. IEEE Transactions on Vehicular Technology, 2016, 65(8): 5984–5994. doi: 10.1109/TVT.2015.2478898
    SUN Geng, LIU Yanheng, WANG Aimin, et al. Sidelobe control by node selection algorithm based on virtual linear array for collaborative beamforming in WSNs[J]. Wireless Personal Communications, 2016, 90(3): 1443–1462. doi: 10.1007/s11277-016-3403-9
    SUN Geng, LIU Yanheng, ZHANG Jing, et al. Node selection optimization for collaborative beamforming in wireless sensor networks[J]. Ad Hoc Networks, 2016, 37: 389–403. doi: 10.1016/j.adhoc.2015.08.031
    SUN Geng, LIU Yanheng, LIANG Shuang, et al. A sidelobe and energy optimization array node selection algorithm for collaborative beamforming in wireless sensor networks[J]. IEEE Access, 2018, 6: 2515–2530. doi: 10.1109/ACCESS.2017.2783969
    蒋俊正, 李杨剑, 赵海兵, 等. 一种大规模传感器网络节点分布式定位算法[J]. 电子与信息学报, 2019, 41(12): 3022–3028. doi: 10.11999/JEIT181101

    JIANG Junzheng, LI Yangjian, ZHAO Haibing, et al. A distributed node localization algorithm for large scale sensor networks[J]. Journal of Electronics &Information Technology, 2019, 41(12): 3022–3028. doi: 10.11999/JEIT181101
    汪晗, 成昂轩, 王坤, 等. 无线传感器网络分布式迭代定位误差控制算法[J]. 电子与信息学报, 2018, 40(1): 72–78. doi: 10.11999/JEIT170344

    WANG Han, CHENG Angxuan, WANG Kun, et al. Error control algorithm of distributed localization in wireless sensor networks[J]. Journal of Electronics &Information Technology, 2018, 40(1): 72–78. doi: 10.11999/JEIT170344
    KIM Y, LEE B, SO H, et al. Localization technique considering position uncertainty of reference nodes in wireless sensor networks[J]. IEEE Sensors Journal, 2018, 18(3): 1324–1332. doi: 10.1109/JSEN.2017.2782805
    STOLERU R, STANKOVIC J A, and SON S H. On composability of localization protocols for wireless sensor networks[J]. IEEE Network, 2008, 22(4): 21–25. doi: 10.1109/MNET.2008.4579767
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  2600
  • HTML全文浏览量:  616
  • PDF下载量:  136
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-16
  • 修回日期:  2020-04-27
  • 网络出版日期:  2020-05-28
  • 刊出日期:  2020-12-08

目录

    /

    返回文章
    返回