高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于有限元的区域分解方法在永磁聚焦系统仿真中的应用

谢鹏 徐立 尹俊辉 杨中海 李斌

谢鹏, 徐立, 尹俊辉, 杨中海, 李斌. 基于有限元的区域分解方法在永磁聚焦系统仿真中的应用[J]. 电子与信息学报, 2021, 43(2): 488-494. doi: 10.11999/JEIT190706
引用本文: 谢鹏, 徐立, 尹俊辉, 杨中海, 李斌. 基于有限元的区域分解方法在永磁聚焦系统仿真中的应用[J]. 电子与信息学报, 2021, 43(2): 488-494. doi: 10.11999/JEIT190706
Peng XIE, Li XU, Junhui YIN, Zhonghai YANG, Bin LI. Application of Finite Element-Based Domain Decomposition Method to the Simulation for Permanent Magnet Focusing System[J]. Journal of Electronics & Information Technology, 2021, 43(2): 488-494. doi: 10.11999/JEIT190706
Citation: Peng XIE, Li XU, Junhui YIN, Zhonghai YANG, Bin LI. Application of Finite Element-Based Domain Decomposition Method to the Simulation for Permanent Magnet Focusing System[J]. Journal of Electronics & Information Technology, 2021, 43(2): 488-494. doi: 10.11999/JEIT190706

基于有限元的区域分解方法在永磁聚焦系统仿真中的应用

doi: 10.11999/JEIT190706
基金项目: 国家自然科学基金(61301054, 61771105, 61921002),中央高校基本科研业务费专项资金(2672018ZYGX2018J037)
详细信息
    作者简介:

    谢鹏:男,1990年生,博士生,研究方向为计算电磁学、数值分析以及区域分解算法

    徐立:男,1985年生,博士,副教授,研究方向为真空电子器件和微波器件的建模与仿真技术

    尹俊辉:男,1989年生,博士生,研究方向为流体力学、计算电磁学、计算结构动力学

    杨中海:男,1944年生,博士,教授,研究方向为相对论电子学、真空电子学以及等离子体电子学

    李斌:男,1974年生,博士,教授,研究方向为高功率微波源以及真空电子器件的建模与仿真技术

    通讯作者:

    徐立 lixu@uestc.edu.cn

  • 中图分类号: TN124

Application of Finite Element-Based Domain Decomposition Method to the Simulation for Permanent Magnet Focusing System

Funds: The National Natural Science Foundation of China (61301054, 61771105, 61921002), The Fundamental Research Funds for Central Universities (2672018ZYGX2018J037)
  • 摘要:

    随着计算机技术以及并行求解技术的发展,区域分解方法越来越多地应用于计算电磁学的各个领域。针对微波管中的永磁聚焦系统仿真,该文提出一种基于有限元的非重叠区域分解方法,其引入一种新型传输条件,并采用内罚的方式推导出有限元弱形式。该区域分解法的最大优势是不需要引入多余的未知量,并且最终集成的有限元矩阵满足对称正定性,适合采用预处理共轭梯度法进行矩阵方程的求解。该文仿真了多个微波管永磁聚焦系统,并与商业软件Maxwell进行了详细的对比,结果表明所提出的区域分解方法和Maxwell精度相当,却拥有着更加优越的计算性能。

  • 图  1  单个区域分成2个子区域示意图

    图  2  单周期结构计算模型及区域分解示意图

    图  3  区域分解法与Maxwell软件轴切面磁感应强度云图对比

    图  4  单周期结构轴线磁场${B_z}$分布

    图  5  Wiggler计算模型和区域划分示意图

    图  6  区域分解法与Maxwell轴切面磁感应强度云图分布对比

    图  7  Wiggler结构轴线By分布和峰值相对误差曲线

    表  1  单周期结构区域分解法与Maxwell软件性能对比

    求解方法子区域数网格数计算时间(s)峰值内存(MB)
    Maxwell242891943510342
    区域分解法827181012918129
    1227181011357111
    1627181011326461
    202718101385532
    下载: 导出CSV

    表  2  Wiggler结构区域分解法与Maxwell性能对比

    实例网格数求解方法计算时间(s)峰值内存(MB)
    实例15987880Maxwell217130515
    6476933区域分解法58923407
    实例27784252Maxwell271735942
    8200780区域分解法85829387
    实例39014971Maxwell476645875
    9158627区域分解法112933466
    下载: 导出CSV
  • PARKER R K, ABRAMS R H, DANLY B G, et al. Vacuum electronics[J]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 835–845. doi: 10.1109/22.989967
    SRIKRISHNA P, CHANAKYA T, VENKATESWARAN R, et al. Thermal analysis of high-average power helix traveling-wave tube[J]. IEEE Transactions on Electron Devices, 2018, 65(6): 2218–2226. doi: 10.1109/TED.2017.2786941
    LIU Gaofeng, XUE Qianzhong, ZHANG Shan, et al. Development and demonstration of a Ka-band gyrotron traveling-wave tube[J]. IEEE Transactions on Plasma Science, 2018, 46(6): 1975–1983. doi: 10.1109/TPS.2018.2835843
    CHEN Wenlong, HU Quan, HU Yulu, et al. Magnetic focusing simulator: A 3-D finite-element permanent-magnet focusing system design tool[J]. IEEE Transactions on Electron Devices, 2015, 62(4): 1319–1326. doi: 10.1109/TED.2015.2400993
    YANG Wenying, PENG Fei, DINAVAHI V, et al. A generalized parallel transmission line iteration for finite element analysis of permanent magnet axisymmetrical actuator[J]. IEEE Transactions on Magnetics, 2019, 55(3): 7400410. doi: 10.1109/TMAG.2018.2885966
    FU Dongshan, XU Yanliang, GILLON F, et al. Presentation of a novel transverse-flux permanent magnet linear motor and its magnetic field analysis based on Schwarz-Christoffel mapping method[J]. IEEE Transactions on Magnetics, 2018, 54(3): 6000204. doi: 10.1109/TMAG.2017.2756847
    ANSYS. Maxwell 3D electromagnetic field solver[EB/OL]. https://www.ansys.com/products/electronics/ansys-maxwell, 2019.
    LI Bin, YANG Zhonghai, LI Jianqing, et al. Theory and design of microwave-tube simulator suite[J]. IEEE Transactions on Electron Devices, 2009, 56(5): 919–927. doi: 10.1109/TED.2009.2015413
    LU Jiaqing, CHEN Yongpin, LI Dongwei, et al. An embedded domain decomposition method for electromagnetic modeling and design[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(1): 309–323. doi: 10.1109/TAP.2018.2874751
    BELGACEM F B. The mortar finite element method with Lagrange multipliers[J]. Numerische Mathematik, 1999, 84(2): 173–197. doi: 10.1007/s002110050468
    KÖPPEL M, MARTIN V, and ROBERTS J E. A stabilized Lagrange multiplier finite-element method for flow in porous media with fractures[J]. GEM-International Journal on Geomathematics, 2019, 10(1): 7. doi: 10.1007/s13137-019-0117-7
    SHAO Yang, PENG Zhen, and LEE J F. Thermal-aware DC IR-drop co-analysis using non-conformal domain decomposition methods[J]. Proceedings of the Royal Society A, 2012, 468(2142): 1652–1675. doi: 10.1098/rspa.2011.0708
    RAWAT V. Finite element domain decomposition with second order transmission conditions for time-harmonic electromagnetic problems[D]. [Ph. D. dissertation], The Ohio State University, 2009: 11–19.
    MATSUO T, OHTSUKI Y, and SHIMASAKI M. Efficient linear solvers for mortar finite-element method[J]. IEEE Transactions on Magnetics, 2007, 43(4): 1469–1472. doi: 10.1109/TMAG.2007.891415
    LIONS P L. On the Schwarz alternating method III: A variant for nonoverlapping subdomains[C]. The 3rd International Symposium on Domain Decomposition Methods for Partial Differential Equations. Philadelphia, USA, 1990: 202–223.
    BLANDFORD G E and TAUCHERT T R. Thermoelastic analysis of layered structures with imperfect layer contact[J]. Computers & Structures, 1985, 21(6): 1283–1291. doi: 10.1016/0045-7949(85)90182-8
    SAVIJA I, CULHAM J R, YOVANOVICH M M, et al. Review of thermal conductance models for joints incorporating enhancement materials[J]. Journal of Thermophysics and Heat Transfer, 2003, 17(1): 43–52. doi: 10.2514/2.6732
    WEBB J P and FORGAHANI B. Hierarchal scalar and vector tetrahedra[J]. IEEE Transactions on Magnetics, 1993, 29(2): 1495–1498. doi: 10.1109/20.250686
    YIN Junhui, XU Li, WANG Hao, et al. Accurate and fast three-dimensional free vibration analysis of large complex structures using the finite element method[J]. Computers & Structures, 2019, 221: 142–156. doi: 10.1016/j.compstruc.2019.06.002
    KARYPIS G. A software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices[EB/OL]. http://glaros.dtc.umn.edu/gkhome/fetch/sw/metis/manual.pdf, 2013.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  901
  • HTML全文浏览量:  409
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-10
  • 修回日期:  2020-08-24
  • 网络出版日期:  2020-12-10
  • 刊出日期:  2021-02-23

目录

    /

    返回文章
    返回