Planar Sparse Array Constraint Optimization Based on Hybrid Trigonometric Mutation Differential Evolution Algorithm
-
摘要:
针对旁瓣零陷凹面约束的稀疏平面阵列优化及算法早熟等问题,该文基于参数自适应的思想,提出一种混合三角变异差分进化算法。通过引入旁瓣零陷凹面约束矩阵,构建自适应惩罚函数,时变权重组合变异策略与交叉策略,提高算法前期全局搜索能力和后期收敛能力,最终实现峰值旁瓣电平和旁瓣零陷凹面的平面阵列约束优化。仿真结果表明,对比混合三角变异策略前的算法,该算法在完成稀疏阵列峰值旁瓣电平优化的同时,能在指定旁瓣区域完成零陷凹面设计,降低有源干扰影响。
Abstract:For the problems of sparse planar array optimization with side-lobe concave nulls constraints and premature algorithm, a Hybrid Trigonometric Mutation Differential Evolution (HTMDE) algorithm is proposed based on the idea of parameter adaptation. By introducing side-lobe concave nulls constraints matrix, adaptive penalty function is constructed. Time-varying weight combination mutation strategy and crossover strategy improve the initial global search ability and late convergence ability of the algorithm. The constrained optimization of the planar array with peak side lobe level and side-lobe concave nulls is finally realized. The simulation results show that, compared with the algorithm before the hybrid trigonometric mutation strategy, the algorithm not only optimizes the peak side-lobe level of sparse array, but also designs concave nulls in specified side-lobe area to reduce the influence of active interference.
-
表 1 最大零陷深度约束为45时旁瓣零陷凹面增益(c = 1)
序号 1 2 3 4 5 6 7 8 9 $p$ 50 50 50 51 51 51 52 52 52 $q$ 50 51 52 50 51 52 50 51 52 增益(dB) –41.7232 –47.8437 –43.4869 –41.2586 –53.0450 –44.7019 –43.8560 –46.1852 –46.9309 表 2 最大零陷深度约束为50时旁瓣零陷凹面增益(c = 1)
序号 1 2 3 4 5 6 7 8 9 $p$ 50 50 50 51 51 51 52 52 52 $q$ 50 51 52 50 51 52 50 51 52 增益(dB) –46.6703 –45.7740 –42.0270 –43.5748 –55.1658 –43.9545 –42.9269 –49.6869 –45.4186 表 3 最大零陷深度约束为55时旁瓣零陷凹面增益(c = 1)
序号 1 2 3 4 5 6 7 8 9 $p$ 50 50 50 51 51 51 52 52 52 $q$ 50 51 52 50 51 52 50 51 52 增益(dB) –46.4656 –47.1974 –43.3241 –47.4544 –58.0909 –43.7558 –55.5215 –48.7782 –45.2064 表 4 最大零陷深度约束为45时旁瓣零陷凹面增益(c = 2)
序号 1 2 3 4 5 6 7 8 9 p 49 49 49 49 49 50 50 50 50 q 49 50 51 52 53 49 50 51 52 增益(dB) –46.5458 –45.8412 –46.2580 –40.8917 –40.9214 –49.3585 –55.9305 –47.3353 –42.1900 序号 10 11 12 13 14 15 16 17 18 p 50 51 51 51 51 51 52 52 52 q 53 49 50 51 52 53 49 50 51 增益(dB) –42.6126 –43.5500 –51.2554 –49.3633 –44.1652 –43.3289 –44.5767 –60 –60 序号 19 20 21 22 23 24 25 p 52 52 53 53 53 53 53 q 52 53 49 50 51 52 53 增益(dB) –45.5003 –42.0649 –46.5876 –45.0475 –48.2879 –44.7265 –41.0207 表 5 最大零陷深度约束为50时旁瓣零陷凹面增益(c = 2)
序号 1 2 3 4 5 6 7 8 9 p 49 49 49 49 49 50 50 50 50 q 49 50 51 52 53 49 50 51 52 增益(dB) –37.6175 –40.3846 –45.7498 –48.2500 –43.6255 –36.8799 –41.7660 –49.6858 –45.8806 序号 10 11 12 13 14 15 16 17 18 p 50 51 51 51 51 51 52 52 52 q 53 49 50 51 52 53 49 50 51 增益(dB) –41.8181 –37.2718 –43.5080 –60 –45.8777 –39.6356 –39.5716 –45.9265 –60 序号 19 20 21 22 23 24 25 $p$ 52 52 53 53 53 53 53 $q$ 52 53 49 50 51 52 53 增益(dB) –47.8587 –39.4033 –43.4406 –50.7166 –60 –51.4716 –40.3799 表 6 最大零陷深度约束为55时旁瓣零陷凹面增益(c = 2)
序号 1 2 3 4 5 6 7 8 9 p 49 49 49 49 49 50 50 50 50 q 49 50 51 52 53 49 50 51 52 增益(dB) –44.8401 –46.0399 –39.5838 –38.3594 –45.4208 –54.4196 –59.5659 –43.2692 –43.0806 序号 10 11 12 13 14 15 16 17 18 p 50 51 51 51 51 51 52 52 52 q 53 49 50 51 52 53 49 50 51 增益(dB) –51.9257 –41.3720 –45.5307 –55.5682 –49.6248 –40.8617 –36.9498 –40.1514 –48.4430 序号 19 20 21 22 23 24 25 $p$ 52 52 53 53 53 53 53 $q$ 52 53 49 50 51 52 53 增益(dB) –43.0303 –37.3386 –35.2466 –38.9316 –46.3749 –42.4130 –37.3552 -
CHEN Kesong, CHEN Hui, WANG Ling, et al. Modified real GA for the synthesis of sparse planar circular arrays[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 274–277. doi: 10.1109/LAWP.2015.2440432 DAI Dingcheng, YAO Minli, MA Hongguang, et al. An effective approach for the synthesis of uniformly excited large linear sparse array[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(3): 377–380. doi: 10.1109/LAWP.2018.2790907 LIU Heng, ZHAO Hongwei, LI Weimei, et al. Synthesis of sparse planar arrays using matrix mapping and differential evolution[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 1905–1908. doi: 10.1109/LAWP.2016.2542882 栾晓明, 尚兴荣. 稀布同心圆环阵列联合优化设计[J]. 战术导弹技术, 2017(3): 92–97. doi: 10.16358/j.issn.1009-1300.2017.03.16LUAN Xiaoming and SHANG Xingrong. Joint optimization design of sparse concentric ring arrays[J]. Tactical Missile Technology, 2017(3): 92–97. doi: 10.16358/j.issn.1009-1300.2017.03.16 KURUP D G, HIMDI M, and RYDBERG A. Synthesis of uniform amplitude unequally spaced antenna arrays using the differential evolution algorithm[J]. IEEE Transactions on Antennas and Propagation, 2003, 51(9): 2210–2217. doi: 10.1109/TAP.2003.816361 赵光权, 彭喜元, 孙宁. 基于混合优化策略的微分进化改进算法[J]. 电子学报, 2006, 34(12A): 2402–2405.ZHAO Guangquan, PENG Xiyuan, and SUN Ning. A modified differential evolution algorithm with hybrid optimization strategy[J]. Acta Electronica Sinica, 2006, 34(12A): 2402–2405. FAN Huiyuan and LAMPINEN J. A trigonometric mutation operation to differential evolution[J]. Journal of Global Optimization, 2003, 27(1): 105–129. doi: 10.1023/A:1024653025686 乔俊飞, 傅嗣鹏, 韩红桂. 基于混合变异策略的改进差分进化算法及函数优化[J]. 控制工程, 2013, 20(5): 943–947. doi: 10.14107/j.cnki.kzgc.2013.05.030QIAO Junfei, FU Sipeng, and HAN Honggui. A modified differential evolution algorithm based on hybrid mutation strategy for function optimization[J]. Control Engineering of China, 2013, 20(5): 943–947. doi: 10.14107/j.cnki.kzgc.2013.05.030 SHPAK D J. A method for the optimal pattern synthesis of linear arrays with prescribed nulls[J]. IEEE Transactions on Antennas and Propagation, 1996, 44(3): 286–294. doi: 10.1109/8.486295 FARMANI R and WRIGHT J A. Self-adaptive fitness formulation for constrained optimization[J]. IEEE Transactions on Evolutionary Computation, 2003, 7(5): 445–455. doi: 10.1109/TEVC.2003.817236 刘波, 王凌, 金以慧. 差分进化算法研究进展[J]. 控制与决策, 2007, 22(7): 721–729. doi: 10.13195/j.cd.2007.07.3.liub.001LIU Bo, WANG Ling, and JIN Yihui. Advances in differential evolution[J]. Control and Decision, 2007, 22(7): 721–729. doi: 10.13195/j.cd.2007.07.3.liub.001 蔡海鸾, 郭学萍. 一种新的自适应惩罚函数在遗传算法中的应用[J]. 华东师范大学学报: 自然科学版, 2015(6): 36–45, 52.CAI Hailuan and GUO Xueping. A new adaptive penalty function in the application of genetic algorithm[J]. Journal of East China Normal University:Natural Science, 2015(6): 36–45, 52. DAS S, KONAR A, and CHAKRABORTY U K. Two improved differential evolution schemes for faster global search[C]. The 7th Annual Conference on Genetic and Evolutionary Computation, Washington, USA, 2005: 991–998. doi: 10.1145/1068009.1068177.