Joint Estimation Algorithm for Azimuth Velocity and Normal Velocity of Moving Targets in Airborne Multi-channel SAR
-
摘要:
对运动目标进行SAR成像时,参数估计是必不可少的。现有算法主要针对运动目标的径向速度和方位向速度进行估计,而对3维运动目标的法向速度无法估计。该文利用L型基线的机载多通道SAR系统,提出一种方位向速度和法向速度的联合估计算法。该算法在距离-多普勒域提取运动目标信号,并利用多幅SAR图像之间的相位差进行方位向速度和法向速度的联合估计。该算法不依赖图像配准,不需要解多普勒模糊,因此具有较高的估计精度和鲁棒性,有较强的实际意义和应用价值。
Abstract:Parameter estimation is essential for SAR imaging of moving targets. The existing algorithms mainly estimate the radial velocity and azimuth velocity of the moving target, but the normal velocity of the three-dimensional moving target can not be estimated. In this paper, a joint estimation algorithm of azimuth velocity and normal velocity is proposed by using an airborne multi-channel SAR system with L-shaped baseline. The algorithm extracts the moving target signal in Range-Doppler domain, and estimates the azimuth and normal velocity jointly using the phase differences between multiple SAR images. The algorithm does not rely on image registration, does not need to solve Doppler ambiguity. Therefore, the algorithm has high estimation accuracy and robustness, and has strong practical significance and application value.
-
表 1 SAR系统仿真基本参数
中心频率 飞行速度 飞行高度 最近斜距 PRF 信噪比 多普勒带宽 顺轨基线 交轨基线 9.6 GHz 150 m/s 7500 m 20 km 2000 10 dB 500 Hz 1 m 1 m 表 2 目标3维运动参数(m/s)
径向向速度 方位向速度 法向速度 运动目标1 0 10 10 运动目标2 0 10 0 运动目标3 0 0 10 表 3 运动目标速度估计结果及误差(m/s)
理论方位向速度 理论法向速度 估计方位向速度 估计法向速度 方位向速度估计误差 法向速度估计误差 运动目标1 10.00 10.00 9.85 10.00 0.15 0 运动目标2 10.00 0 9.84 1.15×10–15 0.16 1.15×10–15 运动目标3 0 10.00 7.93×10–2 9.90 7.93×10–2 0.10 表 4 SAR平台部分参数
距离向采样点数 PRF 天线间距 飞行速度 飞行高度 带宽 16384 781 1 m 146 m/s 7544 m 300 MHz -
PERRY R P, DIPIETRO R C, and FANTE R L. SAR imaging of moving targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(1): 188–200. doi: 10.1109/7.745691 FIENUP J R. Detecting moving targets in SAR imagery by focusing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(3): 794–809. doi: 10.1109/7.953237 JAO J K. Theory of synthetic aperture radar imaging of a moving target[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(9): 1984–1992. doi: 10.1109/36.951089 MARQUES P A C and DIAS J M B. Velocity estimation of fast moving targets using a single SAR sensor[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(5): 75–89. doi: 10.1109/TAES.2005.1413748 BARBAROSSA S and FARINA A. Detection and imaging of moving objects with synthetic aperture radar. 2. Joint time-frequency analysis by wigner-ville distribution[J]. IEE Proceedings F - Radar and Signal Processing, 1992, 139(1): 89–97. doi: 10.1049/ip-f-2.1992.0011 WANG Zhirui, XIA Xianggen, XU Jia, et al. Ground moving target imaging based on 2-D velocity search in high resolution SAR[C]. 2017 IEEE Radar Conference, Seattle, USA, 2017: 68–72. SHI Hongyin, YANG Xiaoyan, ZHOU Qiuxiao, et al. SAR slow moving target imaging based on over-sampling smooth algorithm[J]. Chinese Journal of Electronics, 2017, 26(4): 876–882. doi: 10.1049/cje.2017.06.005 YANG Wei, CHEN Jie, LIU Wei, et al. Moving target azimuth velocity estimation for the MASA mode based on sequential SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(6): 2780–2790. doi: 10.1109/JSTARS.2016.2641744 SU Jia, TAO Haihong, WANG Ling, et al. Coherently integrated cubic function based doppler parameters estimation for moving-target imaging[C]. 2017 International Applied Computational Electromagnetics Society Symposium, Suzhou, China, 2017: 1–2. WANG Hanyun and JIANG Yicheng. Real-time parameter estimation for SAR moving target based on WVD slice and FrFT[J]. Electronics Letters, 2018, 54(1): 47–49. doi: 10.1049/el.2017.1740 LI Zhongyu, WU Junjie, LIU Zhutian, et al. An optimal 2-D spectrum matching method for SAR ground moving target imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(10): 5961–5974. doi: 10.1109/TGRS.2018.2829166 魏翔飞, 王小青, 种劲松. 一种基于局域中心频率的SAR图像舰船方位向速度估计方法[J]. 电子与信息学报, 2018, 40(9): 2242–2249. doi: 10.11999/JEIT170991WEI Xiangfei, WANG Xiaoqing, and CHONG Jinsong. Ship azimuthal speed estimation method based on local region doppler centroid in SAR images[J]. Journal of Electronics &Information Technology, 2018, 40(9): 2242–2249. doi: 10.11999/JEIT170991 王超, 王岩飞, 王琦, 等. 基于回波序列最小二乘拟合的高分辨率SAR运动目标速度估计[J]. 电子与信息学报, 2019, 41(5): 1055–1062. doi: 10.11999/JEIT180695WANG Chao, WANG Yanfei, WANG Qi, et al. Velocity estimation of moving targets based on least square fitting of high-resolution SAR echo sequences[J]. Journal of Electronics &Information Technology, 2019, 41(5): 1055–1062. doi: 10.11999/JEIT180695 HE Xiongpeng, LIAO Guisheng, XU Jingwei, et al. Robust radial velocity estimation based on joint-pixel normalized sample covariance matrix and shift vector for moving targets[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(2): 221–225. doi: 10.1109/LGRS.2018.2871950 WANG Genyuan, XIA Xianggen, and CHEN V C. Three-dimensional ISAR imaging of maneuvering targets using three receivers[J]. IEEE Transactions on Image Processing, 2001, 10(3): 436–447. doi: 10.1109/83.908519 ZHANG Qun and YEO T S. Three-dimensional SAR imaging of a ground moving target using the InISAR technique[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(9): 1818–1828. doi: 10.1109/TGRS.2004.831863 ZHANG Qun, YEO T S, DU Gan, et al. Estimation of three-dimensional motion parameters in interferometric ISAR imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(2): 292–300. doi: 10.1109/TGRS.2003.815669 汤立波, 李道京, 洪文, 等. 基于顺轨-交轨InSAR技术的运动舰船目标三维成像[J]. 系统工程与电子技术, 2008, 30(9): 1669–1673. doi: 10.3321/j.issn:1001-506X.2008.09.017TANG Libo, LI Daojing, HONG Wen, et al. Three-dimensional imaging of moving ships with 3D motion based on AT-CT InSAR[J]. Systems Engineering and Electronics, 2008, 30(9): 1669–1673. doi: 10.3321/j.issn:1001-506X.2008.09.017 尹建凤, 李道京, 王爱明, 等. 基于星载毫米波顺轨-交轨InISAR的空间运动目标三维成像技术研究[J]. 宇航学报, 2013, 34(2): 237–245. doi: 10.3873/j.issn.1000-1328.2013.02.013YIN Jianfeng, LI Daojing, WANG Aiming, et al. Three-dimensional imaging technique of space moving target based on spaceborne along-cross track millimeter-wave In-ISAR[J]. Journal of Astronautics, 2013, 34(2): 237–245. doi: 10.3873/j.issn.1000-1328.2013.02.013