高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种提升汽车雷达方位角分辨率的成像处理方法

王同军 吴锋 徐伟

王同军, 吴锋, 徐伟. 一种提升汽车雷达方位角分辨率的成像处理方法[J]. 电子与信息学报, 2020, 42(8): 2037-2044. doi: 10.11999/JEIT190618
引用本文: 王同军, 吴锋, 徐伟. 一种提升汽车雷达方位角分辨率的成像处理方法[J]. 电子与信息学报, 2020, 42(8): 2037-2044. doi: 10.11999/JEIT190618
Tongjun WANG, Feng WU, Wei XU. A Novel Imaging Approach for Improving Azimuth Angular Resolution of Automotive Radars[J]. Journal of Electronics & Information Technology, 2020, 42(8): 2037-2044. doi: 10.11999/JEIT190618
Citation: Tongjun WANG, Feng WU, Wei XU. A Novel Imaging Approach for Improving Azimuth Angular Resolution of Automotive Radars[J]. Journal of Electronics & Information Technology, 2020, 42(8): 2037-2044. doi: 10.11999/JEIT190618

一种提升汽车雷达方位角分辨率的成像处理方法

doi: 10.11999/JEIT190618
基金项目: 河南省科技攻关项目(172102210450, 182102210533, 182102110160),河南省高等学校重点科研项目(18B520035)
详细信息
    作者简介:

    王同军:男,1985年生,讲师,研究方向为交通环境智能感知、高速信息处理、物联网应用

    吴锋:男,1981年生,讲师,研究方向为信号处理、无线数据通信、物联网技术

    徐伟:男,1983年生,教授,研究方向为新体制雷达系统、微波遥感应用

    通讯作者:

    王同军 xy_wangtj@126.com

  • 中图分类号: TN951

A Novel Imaging Approach for Improving Azimuth Angular Resolution of Automotive Radars

Funds: The Scientific and Technological Project in Henan Province (172102210450, 182102210533, 182102110160), The Key Scientific Research Projects in Institutions of Henan Higher Learning (18B520035)
  • 摘要:

    针对汽车雷达方位角分辨率受方位向天线长度限制的问题,该文提出一种基于多波束实孔径雷达图像融合来提升汽车雷达方位角分辨率的成像方法。该方法首先利用相控阵天线波束电扫描来获取前视实孔径雷达图像,然后根据汽车雷达成像几何关系通过多张多角度实孔径雷达图像相参累加来提升雷达方位角分辨率。计算机仿真结果验证了该方法在提升汽车雷达方位角分辨率的有效性。

  • 图  1  提升方位分辨率的前视成像雷达工作方式示意图

    图  2  提升方位分辨率的前视成像雷达工作方式示意图

    图  3  成像处理流程图

    图  4  成像区域打网格处理示意图

    图  5  方位角分辨率仿真结果

    图  6  点阵目标场景设置

    图  7  点阵目标场景设置

    图  8  前视成像雷达实孔径点目标插值处理后的等高线(10 m合成孔径)

    图  9  前视成像雷达高分辨合成孔径点目标插值处理后的等高线(15 m合成孔径)

    图  10  前视成像雷达高分辨合成孔径点目标插值处理后的等高线(5 m合成孔径)

    表  1  车载前视成像雷达仿真参数

    参数数值
    雷达载频96 GHz
    方位向天线长度0.3 m
    系统PRF4000 Hz
    脉冲宽度80 μs
    信号带宽1 GHz
    去斜接收后雷达信号采样率150 MHz
    AD量化位数12位
    方位波束扫描角度范围±15°
    雷达作用距离20~300 m
    波束跃度0.3°
    合成孔径长度10 m
    汽车速度15 m/s
    下载: 导出CSV

    表  2  点目标聚焦性能指标

    模式目标距离向方位向
    分辨率(m)PSLR(dB)ISLR(dB)分辨率(°)PSLR(dB)ISLR(dB)
    实孔径图像P10.09–13.26–9.980.390–26.40–22.24
    P20.09–13.26–9.980.380–26.52–22.47
    P30.09–13.26–9.980.390–26.40–22.24
    实孔径理论值P10.09–13.26–9.800.380–26.60–22.30
    P20.09–13.26–9.800.380–26.60–22.30
    P30.09–13.26–9.800.380–26.60–22.30
    合成处理图像(10 m合成孔径)P10.09–13.26–9.980.010–13.18–9.74
    P20.09–13.26–9.980.390–26.52–22.29
    P30.09–13.26–9.980.010–13.18–9.74
    合成处理理论值(10 m合成孔径)P10.09–13.26–9.800.010–13.26–9.80
    P20.09–13.26–9.80 0.390–26.60–22.30
    P30.09–13.26–9.800.010–13.26–9.80
    合成处理图像(15 m合成孔径)P10.09–13.06–9.720.007–13.08–9.44
    P20.09–13.26–9.980.390–26.52–22.29
    P30.09–13.06–9.720.007–13.07–9.40
    合成处理理论值(15 m合成孔径)P10.09–13.26–9.800.007–13.26–9.80
    P20.09–13.26–9.800.390–26.60–22.30
    P30.09–13.26–9.800.007–13.26–9.80
    下载: 导出CSV
  • XU Zhihuo, SHI Quan, SUN Ling, et al. Novel orthogonal random phase-coded pulsed radar for automotive application[J]. Journal of Radars, 2018, 7(3): 364–375. doi: 10.12000/JR17083
    PATOLE S M, TORLAK M, WANG Dan, et al. Automotive radars: A review of signal processing techniques[J]. IEEE Signal Processing Magazine, 2017, 34(2): 22–35. doi: 10.1109/MSP.2016.2628914
    KRONAUGE M and ROHLING H. New chirp sequence radar waveform[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(4): 2870–2877. doi: 10.1109/TAES.2014.120813
    TAK J, JEONG E, and CHOI J. Metamaterial absorbers for 24-GHz automotive radar applications[J]. Journal of Electromagnetic Waves and Applications, 2017, 31(6): 577–593. doi: 10.1080/09205071.2017.1297257
    GUO Kunyi, HOARE E G, JASTEH D, et al. Road edge recognition using the stripe hough transform from millimeter-wave radar images[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(2): 825–833. doi: 10.1109/TITS.2014.2342875
    MAO Xuesong, INOUE D, MATSUBARA H, et al. Demonstration of in-car doppler laser radar at 1.55 μm for range and speed measurement[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(2): 599–607. doi: 10.1109/TITS.2012.2230325
    LEE J E, LIM H S, JEONG S H, et al. Enhanced iron-tunnel recognition for automotive radars[J]. IEEE Transactions on Vehicular Technology, 2016, 65(6): 4412–4418. doi: 10.1109/TVT.2015.2460992
    KELLNER D, BARJENBRUCH M, KLAPPSTEIN J, et al. Tracking of extended objects with high-resolution Doppler radar[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(5): 1341–1353. doi: 10.1109/TITS.2015.2501759
    WANG Xiao, XU Linhai, SUN Hongbin, et al. On-road vehicle detection and tracking using MMW radar and monovision fusion[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(7): 2075–2084. doi: 10.1109/TITS.2016.2533542
    WANG H N, HUANG Yingwei, and CHUN S J. Spatial diversity 24-GHz FMCW radar with ground effect compensation for automotive applications[J]. IEEE Transactions on Vehicular Technology, 2017, 66(2): 965–973. doi: 10.1109/TVT.2016.2565608
    ASKELAND S A and EKMAN T. Tracking with a high-resolution 2D spectral estimation based automotive radar[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(5): 2418–2423. doi: 10.1109/TITS.2015.2407571
    LEE M S and KIM Y H. Design and performance of a 24-GHz switch-antenna array FMCW radar system for automotive applications[J]. IEEE Transactions on Vehicular Technology, 2010, 59(5): 2290–2297. doi: 10.1109/TVT.2010.2045665
    HU Chenxi, LIU Yimin, MENG Huadong, et al. Randomized switched antenna array FMCW radar for automotive applications[J]. IEEE Transactions on Vehicular Technology, 2014, 63(8): 3624–3641. doi: 10.1109/TVT.2014.2308895
    保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京: 电子工业出版社, 2005: 169–170.

    BAO Zheng, XING Mengdao, and WANG Tong. Radar Imaging Technology[M]. Beijing: Publishing House of Electronics Industry, 2005: 169–170.
    DEVADITHYA S, PEDROSS-ENGEL A, WATTS C M, et al. GPU-accelerated enhanced resolution 3-D SAR imaging with dynamic metamaterial antennas[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(12): 5096–5103. doi: 10.1109/TMTT.2017.2766060
    CHANG W Y, WU Mengche, CHANG Yanglang, et al. GPU acceleration of adaptive local kriging applied to retrieving slant-range surface motion maps[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(11): 4317–4325. doi: 10.1109/JSTARS.2018.2871877
    WIJAYASIRI A, BANERJEE T, RANKA S, et al. Dynamic data-driven SAR image reconstruction using multiple GPUs[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(11): 4326–4338. doi: 10.1109/JSTARS.2018.2873198
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  2858
  • HTML全文浏览量:  1114
  • PDF下载量:  137
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-13
  • 修回日期:  2020-02-23
  • 网络出版日期:  2020-03-21
  • 刊出日期:  2020-08-18

目录

    /

    返回文章
    返回