高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于核稀疏编码的阵发性房颤检测

刘明 孟宪辉 熊鹏 刘秀玲

刘明, 孟宪辉, 熊鹏, 刘秀玲. 基于核稀疏编码的阵发性房颤检测[J]. 电子与信息学报, 2020, 42(7): 1743-1749. doi: 10.11999/JEIT190582
引用本文: 刘明, 孟宪辉, 熊鹏, 刘秀玲. 基于核稀疏编码的阵发性房颤检测[J]. 电子与信息学报, 2020, 42(7): 1743-1749. doi: 10.11999/JEIT190582
Ming LIU, Xianhui MENG, Peng XIONG, Xiuling LIU. Detection of Paroxysmal Atrial Fibrillation Based on Kernel Sparse Coding[J]. Journal of Electronics & Information Technology, 2020, 42(7): 1743-1749. doi: 10.11999/JEIT190582
Citation: Ming LIU, Xianhui MENG, Peng XIONG, Xiuling LIU. Detection of Paroxysmal Atrial Fibrillation Based on Kernel Sparse Coding[J]. Journal of Electronics & Information Technology, 2020, 42(7): 1743-1749. doi: 10.11999/JEIT190582

基于核稀疏编码的阵发性房颤检测

doi: 10.11999/JEIT190582
基金项目: 国家自然科学基金(61673158),河北省自然科学基金(F2018201070),河北省研究生创新资助项目(CXZZSS2019006),河北省青年拔尖人才项目(BJ2019044)
详细信息
    作者简介:

    刘明:男,1972年生,博士,副教授,研究方向为模式识别和心电信号处理

    孟宪辉:女,1994年生,硕士生,研究方向为心电信号处理

    熊鹏:女,1986年生,博士,讲师,研究方向为模式识别和生物信号处理

    刘秀玲:女,1977年生,博士,教授,研究方向为生物医学成像和信号处理

    通讯作者:

    刘秀玲 liuxiuling121@hotmail.com

  • 中图分类号: TP399

Detection of Paroxysmal Atrial Fibrillation Based on Kernel Sparse Coding

Funds: The National Natural Science Fundation of China (61673158), The Natural Science Foundation of Hebei Province (F2018201070), The Graduate Innovation Funding Project of Hebei Province (CXZZSS2019006), The Hebei Young Talent Project (BJ2019044)
  • 摘要:

    阵发性房颤(PAF)是一种具有偶发性的心律失常,其较高的漏检率导致心脏相关疾病的增加。该文提出了一种基于核稀疏编码的自动检测方法,可以仅根据较短RR间期数据识别PAF发作。该方法采用特殊几何结构来分析数据高维特性,通过计算协方差矩阵作为特征描述子,找到蕴含在数据中的黎曼流形结构;然后基于Log-Euclid框架,利用核方法将流形空间映射到高维可再生核希尔伯特空间,以获取更准确的稀疏表示来快速识别PAF。经麻省理工学院-贝斯以色列医院房颤数据库验证,获得98.71%的敏感性、98.43%的特异度和98.57%的总准确率。因此,该研究对检测短暂发作的PAF有实质性的改善,在临床监测和治疗方面显示出良好的潜力。

  • 图  1  PAF检测流程图

    图  2  PAF患者ECG记录的RR间期时间序列

    图  3  PAF参数变化的所需计算时间

    表  1  参数变化的检测性能(%)

    字典原子数(N)重复交叉验证分割滑动窗口(n)
    163264
    SeSpAccSeSpAccSeSpAcc
    40数据集197.9996.6397.3298.4497.9598.1998.8697.7598.30
    数据集297.9597.4297.6898.7498.1598.4498.6798.4398.55
    数据集398.0097.9997.9998.6598.5198.5198.9798.3098.64
    数据集497.3898.4497.9198.5098.6798.5998.7898.5798.67
    数据集598.3698.3498.3598.4998.5598.5298.8998.5798.73
    平均97.9497.7697.8598.5698.3798.4598.8398.3298.58
    60数据集198.1596.9197.5398.3898.3198.3498.9796.0497.51
    数据集298.2697.3297.7998.0698.1298.0998.4694.2696.36
    数据集398.3297.1097.7198.1998.5298.3698.9798.4098.68
    数据集497.7698.4198.0998.7898.5298.6598.9198.6498.78
    数据集598.0398.6798.3598.5798.6098.5898.8698.5398.69
    平均98.1097.6897.8998.3998.4198.4098.8397.1798.00
    80数据集198.1597.2697.7098.5298.2498.3898.9798.1798.57
    数据集297.9997.4397.7198.8198.2798.5498.9798.3598.66
    数据集397.9897.9697.9798.8698.3198.5899.0098.4898.74
    数据集497.3998.2497.8198.7398.6698.6998.9398.4498.69
    数据集597.6098.6298.1198.6598.6698.6598.8898.6798.78
    平均97.8297.9097.8698.7198.4398.5798.9598.4298.69
    100数据集198.2997.2997.7998.7798.2398.5099.0097.0198.01
    数据集298.1397.7297.9298.8198.0998.4598.9498.5698.75
    数据集397.7097.7297.7197.5298.5198.0198.9498.8098.87
    数据集497.9098.3898.1498.6098.7298.6698.9498.8098.87
    数据集598.3598.4798.4198.7098.6898.6998.9798.6398.80
    平均98.0797.9297.9598.4898.4598.4698.9698.3698.66
    120数据集196.6494.0395.3397.8795.8696.8698.8997.1097.99
    数据集298.1193.2295.6698.8197.7498.2897.7397.8497.79
    数据集397.5997.4997.0498.7998.5498.6699.0097.3698.18
    数据集498.2498.1098.1798.5098.5998.5498.9498.4698.70
    数据集598.2398.4498.3498.3498.6898.5198.8098.5498.67
    平均97.7696.2696.9198.4697.8898.1798.6797.8698.27
    下载: 导出CSV

    表  2  不同算法分类效果对比(%)

    文献年份RR间期长度SeSpAcc
    Lian等人[20]201112895.8995.40
    Huang等人[18]201112896.1098.10
    Petrėnas等人[7]20156097.1098.30
    Zhou等人[19]201512897.3798.4497.99
    Cui等人[8]201715097.0497.9697.78
    Andersen等人[10]20183198.9896.9597.80
    本文方法20193398.7198.4398.57
    下载: 导出CSV
  • HAQQANI H M, CHAN K H, GREGORY A T, et al. Atrial fibrillation: State of the art in 2017-shifting paradigms in pathogenesis, diagnosis, treatment and prevention[J]. Heart, Lung and Circulation, 2017, 26(9): 867–869. doi: 10.1016/s1443-9506(17)31276-3
    DE SISTI A, LECLERCQ J F, HALIMI F, et al. Evaluation of time course and predicting factors of progression of paroxysmal or persistent atrial fibrillation to permanent atrial fibrillation[J]. Pacing and Clinical Electrophysiology, 2014, 37(3): 345–355. doi: 10.1111/pace.12264
    ZHOU Xiaolin, DING Hongxia, UNG B, et al. Automatic online detection of atrial fibrillation based on symbolic dynamics and Shannon entropy[J]. BioMedical Engineering OnLine, 2014, 13(1): 18. doi: 10.1186/1475-925X-13-18
    SEPULVEDA-SUESCUN J P, MURILLO-ESCOBAR J, URDA-BENITEZ R D, et al. Atrial Fibrillation Detection Through Heart Rate Variability Using a Machine Learning Approach and Poincare Plot Features[M]. TORRES I, BUSTAMANTE J, and SIERRA D A. VII Latin American Congress on Biomedical Engineering CLAIB 2016, Bucaramanga, Santander, Colombia. Singapore: Springer Nature Singapore Pte Ltd, 2016: 565–568.
    ANDERSEN R S, PEIMANKAR A, and PUTHUSSERYPADY S. A deep learning approach for real-time detection of atrial fibrillation[J]. Expert Systems with Applications, 2019, 115: 465–473. doi: 10.1016/j.eswa.2018.08.011
    季虎, 孙即祥, 王春光. 基于小波变换的自适应QRS-T对消P波检测算法[J]. 电子与信息学报, 2007, 29(8): 1868–1871. doi: 10.3724/SP.J.1146.2006.00117

    JI Hu, SUN Jixiang, and WANG Chunguang. An adaptive QRS-T cancellation based on wavelet transform for P-wave detection[J]. Journal of Electronics &Information Technology, 2007, 29(8): 1868–1871. doi: 10.3724/SP.J.1146.2006.00117
    PETRĖNAS A, SÖRNMO L, LUKOŠEVIČIUS, et al. Detection of occult paroxysmal atrial fibrillation[J]. Medical & Biological Engineering & Computing, 2015, 53(4): 287–297. doi: 10.1007/s11517-014-1234-y
    CUI Xingran, CHANG E, YANG Wenhuang, et al. Automated detection of paroxysmal atrial fibrillation using an information-based similarity approach[J]. Entropy, 2017, 19(12): 677. doi: 10.3390/e19120677
    XIN Yi and ZHAO Yizhang. Paroxysmal atrial fibrillation recognition based on multi-scale wavelet α-entropy[J]. BioMedical Engineering OnLine, 2017, 16(1): 121. doi: 10.1186/s12938-017-0406-z
    TUZEL O, PORIKLI F, and MEER P. Region covariance: A fast descriptor for detection and classification[C]. Proceedings of the 9th European Conference on Computer Vision, Graz, Austria, 2006: 589–600.
    ZHANG Yingying, YANG Cai, and ZHANG Ping. Two-stage sparse coding of region covariance via Log-Euclidean kernels to detect saliency[J]. Neural Networks, 2017, 89: 84–96. doi: 10.1016/j.neunet.2017.02.012
    ARSIGNY V, FILLARD P, PENNEC X, et al. Geometric means in a novel vector space structure on symmetric positive-definite matrices[J]. SIAM Journal on Matrix Analysis and Applications, 2007, 29(1): 328–347. doi: 10.1137/050637996
    SCHÖLKOPF B and SMOLA A J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond[M]. Cambridge, USA: MIT Press, 2018: 13. doi: 10.7551/mitpress/4175.003.0018.
    LI Peihua, WANG Qilong, ZUO Wangmeng, et al. Log-Euclidean kernels for sparse representation and dictionary learning[C]. 2013 IEEE International Conference on Computer Vision. New York, USA, 2013: 1601–1608. doi: 10.1109/ICCV.2013.202.
    GOLDBERGER A L, AMARAl L A N, GLASS L, et al. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals[J]. Circulation, 2000, 101(23): e215–e220. doi: 10.1161/01.CIR.101.23.e215
    HARANDI M T, SANDERSON C, HARTLEY R, et al. Sparse coding and dictionary learning for symmetric positive definite matrices: A kernel approach[C]. The 12th European Conference on Computer Vision, Florence, Italy, 2012: 216-229. doi: 10.1007/978-3-642-33709-3_16.
    HUANG Chao, YE Shuming, CHEN Hang, et al. A novel method for detection of the transition between atrial fibrillation and sinus rhythm[J]. IEEE Transactions on Biomedical Engineering, 2011, 58(4): 1113–1119. doi: 10.1109/TBME.2010.2096506
    ZHOU Xiaolin, DING Hongxia, WU Wanqing, et al. A real-time atrial fibrillation detection algorithm based on the instantaneous state of heart rate[J]. PLoS One, 2015, 10(9): e0136544. doi: 10.1371/journal.pone.0136544
    LIAN Jie, WANG Lian, and MUESSIG D. A simple method to detect atrial fibrillation using RR intervals[J]. The American Journal of Cardiology, 2011, 107(10): 1494–1497. doi: 10.1016/j.amjcard.2011.01.028
    LEE J, NAM Y, MCMANUS D D, et al. Time-varying coherence function for atrial fibrillation detection[J]. IEEE Transactions on Biomedical Engineering, 2013, 60(10): 2783–2793. doi: 10.1109/TBME.2013.2264721
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  2106
  • HTML全文浏览量:  1128
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-01
  • 修回日期:  2020-03-04
  • 网络出版日期:  2020-03-27
  • 刊出日期:  2020-07-23

目录

    /

    返回文章
    返回