Second-order Intermodulation Low Frequency Blocking Effect and Mechanism for Communication Radio under Electromagnetic Radiation
-
摘要:
为揭示通信电台复杂电磁环境效应机理,该文采用全电平辐照法实验研究了某型超短波数字通信电台的单频和带外双频电磁辐射阻塞效应,确定了其单频电磁辐射效应规律和敏感带宽,实验数据表明受试电台对带外双频3阶互调阻塞较单频电磁辐射阻塞干扰敏感9~23 dB。实验过程中发现了一种既不能用双频非互调迭加机理解释、也不能用3阶交互调机理解释的双频电磁辐射敏感现象。
Abstract:In order to reveal the complex electromagnetic environment effects mechanism of communication radio, the blocking effect of single-frequency and out-of-band dual-frequency electromagnetic radiation for the ultra-short wave digital communication radio is experimentally studied by irradiation method. The rule of single-frequency electromagnetic radiation effect and the susceptible bandwidth are determined. The experimental data show that the tested radio is 9~23 dB more susceptible to out-of-band dual-frequency third-order intermodulation blocking than single-frequency electromagnetic radiation blocking. A sensitive phenomenon of dual-frequency electromagnetic radiation which can neither be explained by the dual-frequency non-intermodulation superposition mechanism nor by the third-order intermodulation mechanism has been found in the experiment.
-
表 1 通信电台双频3阶互调阻塞临界干扰场强
频率组合(kHz) Δf1=f1–f0 36 48 72 96 144 Δf2=f2–f0 72 96 144 192 288 临界干扰场强比 E1/E10 –11.7 –12.3 –13.3 –17.9 –18.2 E2/E20 –13.2 –22.5 –24.8 –32.3 –27.1 频率组合(kHz) Δf1=f1–f0 36 48 72 96 144 Δf2=f2–f0 48 86 154 212 268 临界干扰场强比 E1/E10 –8.7 –13.3 –13.6 –19.5 –19.8 E2/E20 –10.8 –17.0 –24.1 –19.9 –22.9 表 2 通信电台新型双频阻塞临界干扰场强
频率组合(kHz) Δf1=f1–f0 100 150 200 250 300 Δf2=f2–f0 150 200 250 300 350 临界干扰场强比 E1/E10 –25.6 –26.3 –28.7 –28.4 –30.6 E2/E20 –26.7 –29.5 –29.2 –30.5 –28.5 频率组合(kHz) Δf1=f1–f0 127 150 220 240 230 Δf2=f2–f0 177 160 330 360 390 临界干扰场强比 E1/E10 –26.5 –17.5 –30.6 –34.4 –4.0 E2/E20 –27.7 –17.7 –30.5 –34.4 –4.1 表 3 干扰信号进入通信电台各结构后输出分量频率
结构 频率 天线接收 f1, f2 (设f1<f2) 一级放大 f1, f2, f2±f1, 2f1±f2和2f2±f1, 3f1和3f2 (忽略高阶互调分量) 上变频 Fm+f0–f1, Fm+f0–f2, Fm+f0–f2±f1, Fm+f0–2f1±f2, Fm+f0–2f2±f1, Fm+f0–3f1, Fm+f0–3f2和
Fm+f0+f1, Fm+f0+f2, Fm+f0+f2±f1, Fm+f0+2f1±f2, Fm+f0+2f2±f1, Fm+f0+3f1, Fm+f0+3f2窄带滤波 Fm+f0–f1, Fm+f0–f2, Fm+f0–2f1+f2和Fm+f0–2f2+f1 三级放大 Fm+f0–f1, Fm+f0–f2, Fm+f0–2f1+f2, Fm+f0–2f2+f1和f2–f1, 2(f2–f1), 3(f2-f1), 2(Fm+f0)–f1–f2,
2(Fm+f0–f1), 2(Fm+f0–f2), 2(Fm+f0)–3f1–f2, 2(Fm+f0)–3f2–f1 (忽略3阶互调)下变频与低通(带通)滤波 FL+f0–f1, FL+f0–f2, FL+f0–2f1+f2, FL+f0–2f2+f1, FL+(f2–f1), FL+2(f2–f1), FL+3(f2–f1) 表 4 2阶互调低频阻塞干扰效应评估准确度
电台工作频率(MHz) 50 60 70 50 60 70 频率组合(kHz) f1–f0 200 200 200 200 200 230 f2–f0 250 250 250 300 300 330 临界干扰场强比 E1/E10 –25.0 –28.9 –29.1 –26.3 –30.2 –29.1 E2/E20 –23.7 –30.9 –22.0 –28.7 –30.1 –28.9 评估准确度R2 4.4 –6.7 2.0 –4.1 –9.4 –7.6 -
孙国至, 刘尚合, 陈京平, 等. 战场电磁环境效应对信息化战争的影响[J]. 军事运筹与系统工程, 2006, 20(3): 43–47. doi: 10.3969/j.issn.1672-8211.2006.03.010Guozhi, LIU Shanghe, CHEN Jingping, et al. The effects on the information warfare of the electromagnetic environments effectiveness in the battle field[J]. Military Operations Research and Systems Engineering, 2006, 20(3): 43–47. doi: 10.3969/j.issn.1672-8211.2006.03.010 刘尚合, 武占成, 张希军. 电磁环境效应及其发展趋势[J]. 国防科技, 2008, 29(1): 1–6. doi: 10.3969/j.issn.1671-4547.2008.01.001LIU Shanghe, WU Zhancheng, and ZHANG Xijun. Electromagnetic environment effect and its development trends[J]. National Defense Science &Technology, 2008, 29(1): 1–6. doi: 10.3969/j.issn.1671-4547.2008.01.001 颜克文. 短波通信设备电磁防护技术研究[D]. [硕士论文], 电子科技大学, 2009: 1–3.YAN Kewen. Research on electromagnetic protection technology of short wave communication equipment[D]. [Master dissertation], University of Electronic Science and Technology of China, 2009: 1–3. 魏光辉, 潘晓东, 万浩江. 装备电磁辐射效应规律与作用机理[M]. 北京: 国防工业出版社, 2018: 87–106.WEI Guanghui, PAN Xiaodong, and WAN Haojiang. Feature and Mechanism of Electromagnetic Radiation Effects for Equipment[M]. Beijing: National Defense Industry Press, 2018: 87–106. 魏光辉, 耿利飞, 潘晓东. 通信电台电磁辐射效应机理[J]. 高电压技术, 2014, 40(9): 2685–2692. doi: 10.13336/j.1003-6520.hve.2014.09.011WEI Guanghui, GENG Lifei, and PAN Xiaodong. Mechanism of electromagnetic radiation effects for communication equipment[J]. High Voltage Engineering, 2014, 40(9): 2685–2692. doi: 10.13336/j.1003-6520.hve.2014.09.011 李伟, 魏光辉, 潘晓东, 等. 典型通信装备带内双频连续波电磁辐射效应预测方法[J]. 系统工程与电子技术, 2016, 38(11): 2474–2480. doi: 10.3969/j.issn.1001-506X.2016.11.04LI Wei, WEI Guanghui, PAN Xiaodong, et al. Electromagnetic radiation effects forecasting method about in-band dual-frequency continuous wave for typical communication equipment[J]. Systems Engineering and Electronics, 2016, 38(11): 2474–2480. doi: 10.3969/j.issn.1001-506X.2016.11.04 李伟, 魏光辉, 王雅平, 等. 某型通信装备带内多频电磁环境生存能力预测[J]. 高电压技术, 2017, 43(8): 2680–2688. doi: 10.13336/j.1003-6520.hve.20170731032LI Wei, WEI Guanghui, WANG Yaping, et al. Survivability forecasting method for typical communication equipment under the in-band multi-frequency electromagnetic environment[J]. High Voltage Engineering, 2017, 43(8): 2680–2688. doi: 10.13336/j.1003-6520.hve.20170731032 LI Wei, WEI Guanghui, PAN Xiaodong, et al. Electromagnetic compatibility prediction method under the multifrequency in-band interference environment[J]. IEEE Transactions on Electromagnetic Compatibility, 2018, 60(2): 520–528. doi: 10.1109/TEMC.2017.2720961 王雅平, 魏光辉, 李伟, 等. 接收机带内双频阻塞干扰机理建模与验证[J]. 北京理工大学学报, 2018, 38(7): 709–714. doi: 10.15918/j.tbit1001-0645.2018.07.008WANG Yaping, WEI Guanghui, LI Wei, et al. Mechanism modeling and verification of receiver with in-band dual-frequency blocking jamming[J]. Transactions of Beijing Institute of Technology, 2018, 38(7): 709–714. doi: 10.15918/j.tbit1001-0645.2018.07.008 王雅平, 魏光辉, 潘晓东, 等. 通信电台带外双频干扰预测模型与试验[J]. 电子学报, 2019, 47(4): 826–831. doi: 10.3969/j.issn.0372-2112.2019.04.009WANG Yaping, WEI Guanghui, PAN Xiaodong, et al. Out-of-band dual frequency jamming prediction model and experiment for communication stations[J]. Acta Electronica Sinica, 2019, 47(4): 826–831. doi: 10.3969/j.issn.0372-2112.2019.04.009 耿利飞, 魏光辉, 潘晓东, 等. 某型通信电台超宽带辐照效应[J]. 强激光与粒子束, 2011, 23(12): 3358–3362. doi: 10.3788/HPLPB20112312.3358GENG Lifei, WEI Guanghui, PAN Xiaodong, et al. UWB irradiation effects on communication equipment[J]. High Power Laser and Particle Beams, 2011, 23(12): 3358–3362. doi: 10.3788/HPLPB20112312.3358 王雅平, 魏光辉, 潘晓东, 等. 通信电台带外连续波强场辐照重启效应分析[J]. 强激光与粒子束, 2017, 29(4): 043201. doi: 10.11884/HPLPB201729.160528WANG Yaping, WEI Guanghui, PAN Xiaodong, et al. Analysis on restart effect of communication station under strong field irradiation interference of out-band continuous wave[J]. High Power Laser and Particle Beams, 2017, 29(4): 043201. doi: 10.11884/HPLPB201729.160528 中央军委装备发展部. GJB 8848-2016 系统电磁环境效应试验方法[S]. 2016.Equipment development department of the Central Military Commission. GJB 8848-2016 Electromagnetic environmental effects test methods for systems[S]. 2016. 李伟, 魏光辉, 潘晓东, 等. 典型通信装备电磁敏感度判据研究[J]. 微波学报, 2016, 32(6): 70–75. doi: 10.14183/j.cnki.1005-6122.201606017LI Wei, WEI Guanghui, PAN Xiaodong, et al. Research on electromagnetic susceptibility criterion for typical communication equipment[J]. Journal of Microwaves, 2016, 32(6): 70–75. doi: 10.14183/j.cnki.1005-6122.201606017 魏光辉. 射频强场电磁环境试验系统可行性研究[J]. 实验室研究与探索, 2005, 24(6): 21–24. doi: 10.3969/j.issn.1006-7167.2005.06.006WEI Guanghui. Research on the feasibility for constructing a high RF electromagnetic field environment simulation system[J]. Research and Exploration in Laboratory, 2005, 24(6): 21–24. doi: 10.3969/j.issn.1006-7167.2005.06.006