高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

经典轨迹的鲁棒相似度量算法

王前东

王前东. 经典轨迹的鲁棒相似度量算法[J]. 电子与信息学报, 2020, 42(8): 1999-2005. doi: 10.11999/JEIT190550
引用本文: 王前东. 经典轨迹的鲁棒相似度量算法[J]. 电子与信息学报, 2020, 42(8): 1999-2005. doi: 10.11999/JEIT190550
Qiandong WANG. A Robust Trajectory Similarity Measure Method for Classical Trajectory[J]. Journal of Electronics & Information Technology, 2020, 42(8): 1999-2005. doi: 10.11999/JEIT190550
Citation: Qiandong WANG. A Robust Trajectory Similarity Measure Method for Classical Trajectory[J]. Journal of Electronics & Information Technology, 2020, 42(8): 1999-2005. doi: 10.11999/JEIT190550

经典轨迹的鲁棒相似度量算法

doi: 10.11999/JEIT190550
详细信息
    作者简介:

    王前东:男,1977年生,高级工程师,研究方向为数据信息处理及应用

    通讯作者:

    王前东 wangqiandong@sohu.com

  • 中图分类号: TP301

A Robust Trajectory Similarity Measure Method for Classical Trajectory

  • 摘要:

    针对经典轨迹与实时轨迹之间的大差异性,该文利用最长公共子序列理论,提出一种鲁棒的轨迹相似度量方法。该方法首先利用点到线段之间的距离判断经典轨迹的点与实时轨迹的线段是否一致;然后利用改进的多对1最长公共子序列算法,计算经典轨迹与实时轨迹之间的最长公共子序列长度;最后将最长公共子序列长度与经典轨迹的点数的比值作为经典轨迹与实时轨迹之间的相似度。实验说明该算法的鲁棒性,该算法能够有效解决经典轨迹与实时轨迹之间的大差异轨迹相似度量问题。

  • 图  1  不同距离门限的轨迹相似度量

    图  2  不同轨迹删除率的轨迹相似度量

    图  3  不同轨迹扰动率的轨迹相似度量

  • ANDRIENKO G, ANDRIENKO N, FUCHS G, et al. Clustering trajectories by relevant parts for air traffic analysis[J]. IEEE Transactions on Visualization and Computer Graphics, 2018, 24(1): 34–44. doi: 10.1109/TVCG.2017.2744322
    毛嘉莉, 金澈清, 章志刚, 等. 轨迹大数据异常检测: 研究进展及系统框架[J]. 软件学报, 2017, 28(1): 17–34. doi: 10.13328/j.cnki.jos.005151

    MAO Jiali, JIN Cheqing, ZHANG Zhigang, et al. Anomaly detection for trajectory big data: Advancements and framework[J]. Journal of Software, 2017, 28(1): 17–34. doi: 10.13328/j.cnki.jos.005151
    李保珠, 张林, 董云龙, 等. 基于航迹矢量分级聚类的雷达与电子支援措施抗差关联算法[J]. 电子与信息学报, 2019, 41(6): 1310–1316. doi: 10.11999/JEIT180714

    LI Baozhu, ZHANG Lin, DONG Yunlong, et al. Anti-bias track association algorithm of radar and electronic support measurements based on track vectors hierarchical clustering[J]. Journal of Electronics &Information Technology, 2019, 41(6): 1310–1316. doi: 10.11999/JEIT180714
    陈鸿昶, 徐乾, 黄瑞阳, 等. 一种基于用户轨迹的跨社交网络用户身份识别算法[J]. 电子与信息学报, 2018, 40(11): 2758–2764. doi: 10.11999/JEIT180130

    CHEN Hongchang, XU Qian, HUANG Ruiyang, et al. User identification across social networks based on user trajectory[J]. Journal of Electronics &Information Technology, 2018, 40(11): 2758–2764. doi: 10.11999/JEIT180130
    AGRAWAL R, FALOUTSOS C, and SWAMI A. Efficient similarity search in sequence databases[C]. The 4th International Conference on Foundations of Data Organization and Algorithms, Chicago, USA, 1993: 69–84.
    KEOGH E and RATANAMAHATANA C A. Exact indexing of dynamic time warping[J]. Knowledge and Information Systems, 2005, 7(3): 358–386. doi: 10.1007/s10115-004-0154-9
    GUO Ning, MA Mengyu, XIONG Wei, et al. An efficient query algorithm for trajectory similarity based on Fréchet distance threshold[J]. ISPRS International Journal of Geo-Information, 2017, 6(11): 326. doi: 10.3390/ijgi6110326
    魏龙翔, 何小海, 滕奇志, 等. 结合Hausdorff距离和最长公共子序列的轨迹分类[J]. 电子与信息学报, 2013, 35(4): 784–790. doi: 10.3724/SP.J.1146.2012.01078

    WEI Longxiang, HE Xiaohai, TENG Qizhi, et al. Trajectory classification based on Hausdorff distance and longest common subsequence[J]. Journal of Electronics &Information Technology, 2013, 35(4): 784–790. doi: 10.3724/SP.J.1146.2012.01078
    朱进, 胡斌, 邵华. 基于多重运动特征的轨迹相似性度量模型[J]. 武汉大学学报: 信息科学版, 2017, 42(12): 1703–1710. doi: 10.13203/j.whugis20150594

    ZHU Jin, HU Bin, and SHAO Hua. Trajectory similarity measure based on multiple movement features[J]. Geomatics and Information Science of Wuhan University, 2017, 42(12): 1703–1710. doi: 10.13203/j.whugis20150594
    VLACHOS M, KOLLIOS G, and GUNOPULOS D. Discovering similar multidimensional trajectories[C]. The 18th International Conference on Data Engineering, San Jose, USA, 2002: 673–684. doi: 10.1109/ICDE.2002.994784.
    刘宇, 王前东. 基于最长公共子序列的非同步相似轨迹判断[J]. 电讯技术, 2017, 57(10): 1165–1170. doi: 10.3969/j.issn.1001-893x.2017.10.011

    LIU Yu and WANG Qiandong. Computing similar measure between two asynchronous trajectories based on longest common subsequence method[J]. Telecommunication Engineering, 2017, 57(10): 1165–1170. doi: 10.3969/j.issn.1001-893x.2017.10.011
    WAGNER R A and FISCHER M J. The string-to-string correction problem[J]. Journal of the ACM, 1974, 21(1): 168–173. doi: 10.1145/321796.321811
    CHOONG M Y, ANGELINE L, CHIN R K Y, et al. Modeling of vehicle trajectory clustering based on LCSS for traffic pattern extraction[C]. The 2nd IEEE International Conference on Automatic Control and Intelligent Systems, Kota Kinabalu, Malaysia, 2017: 74–79. doi: 10.1109/I2CACIS.2017.8239036.
    王前东. 一种带匹配路径约束的最长公共子序列长度算法[J]. 电子与信息学报, 2017, 39(11): 2615–2619. doi: 10.11999/JEIT170092

    WANG Qiandong. A matching path constrained longest common subsequence length algorithm[J]. Journal of Electronics &Information Technology, 2017, 39(11): 2615–2619. doi: 10.11999/JEIT170092
    WANG Haoxin, ZHONG Jingdong, and ZHANG Defu. A duplicate code checking algorithm for the programming experiment[C]. The 2nd International Conference on Mathematics and Computers in Sciences and in Industry, Sliema, Malta, 2015: 39–42. doi: 10.1109/MCSI.2015.12.
    YUAN Guan, SUN Penghui, ZHAO Jie, et al. A review of moving object trajectory clustering algorithms[J]. Artificial Intelligence Review, 2017, 47(1): 123–144. doi: 10.1007/s10462-016-9477-7
  • 加载中
图(3)
计量
  • 文章访问数:  2303
  • HTML全文浏览量:  1575
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-22
  • 修回日期:  2020-04-08
  • 网络出版日期:  2020-04-16
  • 刊出日期:  2020-08-18

目录

    /

    返回文章
    返回