高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

运营商网络中基于深度强化学习的服务功能链迁移机制

陈卓 冯钢 何颖 周杨

陈卓, 冯钢, 何颖, 周杨. 运营商网络中基于深度强化学习的服务功能链迁移机制[J]. 电子与信息学报, 2020, 42(9): 2173-2179. doi: 10.11999/JEIT190545
引用本文: 陈卓, 冯钢, 何颖, 周杨. 运营商网络中基于深度强化学习的服务功能链迁移机制[J]. 电子与信息学报, 2020, 42(9): 2173-2179. doi: 10.11999/JEIT190545
Zhuo CHEN, Gang FENG, Ying HE, Yang ZHOU. Deep Reinforcement Learning Based Migration Mechanism for Service Function Chain in Operator Networks[J]. Journal of Electronics & Information Technology, 2020, 42(9): 2173-2179. doi: 10.11999/JEIT190545
Citation: Zhuo CHEN, Gang FENG, Ying HE, Yang ZHOU. Deep Reinforcement Learning Based Migration Mechanism for Service Function Chain in Operator Networks[J]. Journal of Electronics & Information Technology, 2020, 42(9): 2173-2179. doi: 10.11999/JEIT190545

运营商网络中基于深度强化学习的服务功能链迁移机制

doi: 10.11999/JEIT190545
基金项目: 国家自然科学基金(61471089, 61401076)
详细信息
    作者简介:

    陈卓:男,1980年生,副教授,博士,硕士生导师,研究方向为网络虚拟化和软件定义网络

    冯钢:男,1964年生,教授,博士生导师,研究方向为计算机网络和无线接入网技术

    何颖:女,1993年生,硕士生,研究方向网络虚拟化技术

    通讯作者:

    陈卓 chenzhuo@cqut.edu.cn

  • 中图分类号: TN915; TP393

Deep Reinforcement Learning Based Migration Mechanism for Service Function Chain in Operator Networks

Funds: The National Natural Science Foundation of China (61471089, 61401076)
  • 摘要: 为改善运营商网络提供的移动服务体验,该文研究服务功能链(SFC)的在线迁移问题。首先基于马尔可夫决策过程(MDP)对服务功能链中的多个虚拟网络功能(VNF)在运营商网络中的驻留位置迁移进行模型化分析。通过将强化学习和深度神经网络相结合提出一种基于双深度Q网络(double DQN)的服务功能链迁移机制,该迁移方法能在连续时间下进行服务功能链的在线迁移决策并避免求解过程中的过度估计。实验结果表明,该文所提出的策略相比于固定部署算法和贪心算法在端到端时延和网络系统收益等方面优势明显,有助于运营商改善服务体验和资源的使用效率。
  • 图  1  基于神经网络的强化学习决策

    图  2  基于双DQN的SFC迁移方法流程图

    图  3  移动业务端到端时延对比

    图  4  基于双DQN方法在不同长度VNF下的延迟对比

    图  5  不同移动次数下系统收益对比

    图  6  系统累积收益对比

    表  1  基于双DQN的SFC迁移算法的伪码

     输入:运营商网络拓扑$G = \left( {N,E} \right)$,服务功能链集合C,网络功
        能集合F;
     输出:SFC迁移策略;
     步骤1:初始化随机权重为$\psi $的神经网络;
     步骤2:初始化动作值函数Q;
     步骤3:初始化经验池(experience replay)存储器N;
     步骤4:for episode = 1, 2, ···, M do,
       观察初始状态${s^0}$,
        for t = 0, 1, ···, N–1 do,
         以概率为$\varepsilon $选择一个随机动作${a^t}$,
         否则选择动作${a^t} = \arg \max Q({s^t},a;{\psi ^t})$;
         在仿真器中执行动作${a^t}$,并观察回报${R_{t + 1}}$和新状态${s_{t + 1}}$,
         存储中间量$ < {s^t},{a^t},{r^t},{s^{t + 1}} > $到经验池存储器N中,
         从经验池存储器N中获取一组样本,
          计算损失函数$L({\psi ^t})$,
          计算关于${\psi ^t}$的损失函数的梯度,
          更新${\psi ^t} \leftarrow {\psi ^t} - \phi {{\text{∇}} _{ {\psi ^t} } }L({\psi ^t})$,其中$\phi $为学习率;
        end
       end
    下载: 导出CSV
  • CHATRAS B and OZOG F F. Network functions virtualization: The portability challenge[J]. IEEE Network, 2016, 30(4): 4–8. doi: 10.1109/MNET.2016.7513857
    ZHANG Qixia, LIU Fangming, and ZENG Chaobing. Adaptive interference-aware VNF placement for service-customized 5G network slices[C]. IEEE Conference on Computer Communications, Paris, France, 2019: 2449–2457. doi: 10.1109/INFOCOM.2019.8737660.
    AGARWAL S, MALANDRINO F, CHIASSERINI C F, et al. Joint VNF placement and CPU allocation in 5G[C]. IEEE Conference on Computer Communications, Honolulu, USA, 2018: 1943–1951. doi: 10.1109/INFOCOM.2018.8485943.
    KUO T W, LIOU B H, LIN K C J, et al. Deploying chains of virtual network functions: On the relation between link and server usage[C]. The 35th Annual IEEE International Conference on Computer Communications, San Francisco, USA, 2016: 1–9. doi: 10.1109/INFOCOM.2016.7524565.
    TALEB T, KSENTINI A, and FRANGOUDIS P A. Follow-me cloud: When cloud services follow mobile users[J]. IEEE Transactions on Cloud Computing, 2019, 7(2): 369–382. doi: 10.1109/TCC.2016.2525987
    ERAMO V, MIUCCI E, AMMAR M, et al. An approach for service function chain routing and virtual function network instance migration in network function virtualization architectures[J]. IEEE/ACM Transactions on Networking, 2017, 25(4): 2008–2025. doi: 10.1109/TNET.2017.2668470
    HOUIDI O, SOUALAH O, LOUATI W, et al. An efficient algorithm for virtual network function scaling[C]. 2017 IEEE Global Communications Conference, Singapore, 2017: 1–7. doi: 10.1109/GLOCOM.2017.8254727.
    CHO D, TAHERI J, ZOMAYA A Y, et al. Real-time Virtual Network Function (VNF) migration toward low network latency in cloud environments[C]. The 10th IEEE International Conference on Cloud Computing, Honolulu, USA, 2017: 798–801. doi: 10.1109/CLOUD.2017.118.
    兰巨龙, 于倡和, 胡宇翔, 等. 基于深度增强学习的软件定义网络路由优化机制[J]. 电子与信息学报, 2019, 41(11): 2669–2674. doi: 10.11999/JEIT180870

    LAN Julong, YU Changhe, HU Yuxiang, et al. A SDN routing optimization mechanism based on deep reinforcement learning[J]. Journal of Electronics &Information Technology, 2019, 41(11): 2669–2674. doi: 10.11999/JEIT180870
    HUANG Xiaohong, YUAN Tingting, QIAO Guanhua, et al. Deep reinforcement learning for multimedia traffic control in software defined networking[J]. IEEE Network, 2018, 32(6): 35–41. doi: 10.1109/MNET.2018.1800097
    LEE J W, MAZUMDAR R R, and SHROFF N B. Non-Convex optimization and rate control for multi-class services in the Internet[J]. IEEE/ACM Transactions on Networking, 2005, 13(4): 827–840. doi: 10.1109/TNET.2005.852876
    李晨溪, 曹雷, 陈希亮, 等. 基于云推理模型的深度强化学习探索策略研究[J]. 电子与信息学报, 2018, 40(1): 244–248. doi: 10.11999/JEIT170347

    LI Chenxi, CAO Lei, CHEN Xiliang, et al. Cloud reasoning model-based exploration for deep reinforcement learning[J]. Journal of Electronics &Information Technology, 2018, 40(1): 244–248. doi: 10.11999/JEIT170347
    MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529–533. doi: 10.1038/nature14236
    GHAZNAVI M, KHAN A, SHAHRIAR N, et al. Elastic virtual network function placement[C]. The 4th IEEE International Conference on Cloud Networking, Niagara Falls, Canada, 2015: 255–260. doi: 10.1109/CloudNet.2015.7335318.
    SUGISONO K, FUKUOKA A, and YAMAZAKI H. Migration for VNF instances forming service chain[C]. The 7th IEEE International Conference on Cloud Networking, Tokyo, Japan, 2018: 1–3. doi: 10.1109/CloudNet.2018.8549194.
    LIN Tachun, ZHOU Zhili, TORNATORE M, et al. Demand-aware network function placement[J]. Journal of Lightwave Technology, 2016, 34(11): 2590–2600. doi: 10.1109/JLT.2016.2535401
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  1654
  • HTML全文浏览量:  772
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-18
  • 修回日期:  2020-06-14
  • 网络出版日期:  2020-07-14
  • 刊出日期:  2020-09-27

目录

    /

    返回文章
    返回