Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有聚类结构相似性的非参数贝叶斯字典学习算法

董道广 芮国胜 田文飚 张洋 刘歌

顾浩然. 功率计误差对六端口反射计精度影响的蒙特卡洛计算机模拟[J]. 电子与信息学报, 1987, 9(4): 371-374.
引用本文: 董道广, 芮国胜, 田文飚, 张洋, 刘歌. 具有聚类结构相似性的非参数贝叶斯字典学习算法[J]. 电子与信息学报, 2020, 42(11): 2765-2772. doi: 10.11999/JEIT190496
Gu Haoran. MONTE CARLO SIMULATION ANALYSIS OF EFFECT OF POWERMETER ERRORS ON MEASURING ACCURACY OF SIX-PORT REFLECTOR[J]. Journal of Electronics & Information Technology, 1987, 9(4): 371-374.
Citation: Daoguang DONG, Guosheng RUI, Wenbiao TIAN, Yang ZHANG, Ge LIU. A Nonparametric Bayesian Dictionary Learning Algorithm with Clustering Structure Similarity[J]. Journal of Electronics & Information Technology, 2020, 42(11): 2765-2772. doi: 10.11999/JEIT190496

具有聚类结构相似性的非参数贝叶斯字典学习算法

doi: 10.11999/JEIT190496
基金项目: 国家自然科学基金(41606117, 41476089, 61671016)
详细信息
    作者简介:

    董道广:男,1990年生,博士,研究方向为贝叶斯统计学习、压缩感知与大气波导

    芮国胜:男,1968年生,博士,教授,博士生导师,研究方向为现代通信理论及信号处理

    田文飚:男,1987年生,博士,副教授,研究方向为大气波导与压缩感知

    张洋:男,1983年生,博士,讲师,研究方向为混沌通信技术

    刘歌:女,1991年生,博士,研究方向为压缩感知与大气波导

    通讯作者:

    董道广 sikongyu@yeah.net

  • 中图分类号: TN911.73; TP301.6

A Nonparametric Bayesian Dictionary Learning Algorithm with Clustering Structure Similarity

Funds: The National Natural Science Foundation of China (41606117, 41476089, 61671016)
  • 摘要: 利用图像结构信息是字典学习的难点,针对传统非参数贝叶斯算法对图像结构信息利用不充分,以及算法运行效率低下的问题,该文提出一种结构相似性聚类beta过程因子分析(SSC-BPFA)字典学习算法。该算法通过Markov随机场和分层Dirichlet过程实现对图像局部结构相似性和全局聚类差异性的兼顾,利用变分贝叶斯推断完成对概率模型的高效学习,在确保算法收敛性的同时具有聚类的自适应性。实验表明,相比目前非参数贝叶斯字典学习方面的主流算法,该文算法在图像去噪和插值修复应用中具有更高的表示精度、结构相似性测度和运行效率。
  • 图  1  本文算法的概率图模型

    图  2  本文算法字典学习过程中获得的聚类效果

    图  3  不同算法的图像去噪效果

    图  4  不同信噪比条件下的去噪信误比

    图  5  不同算法的图像修复效果

    图  6  不同缺失率条件下的平均SER结果

    图  7  不同缺失率条件下的平均SSIM结果

    图  8  不同缺失率条件下的平均时间代价

    表  1  模型中隐变量及其变分参数的VB推断更新公式

    隐变量变分分布变分参数的VB推断更新公式隐变量更新公式
    dkq(dk)Normal(dk|˜mk,˜Λk)˜Λk=PIP+Ni=1˜e0˜f0(˜μ2ik+˜σ2ik)˜ρikIP,

    ˜mk=˜Λ1k(Ni=1˜e0˜f0˜μik˜ρikxki)
    dk=˜mk
    sikq(sik)Normal(sik|˜μik,˜σ2ik)˜σ2ik={˜e0˜f0˜ρik[˜mTk˜mk+tr(˜Λ1k)]+˜c0˜f0}1,

    ˜μik=˜σ2ik(˜e0˜f0˜ρik˜mTkxki)
    sik=˜μik
    zikq(zik)Bernoulli(zik|˜ρik)˜ρik=ρik,1ρik,1+ρik,0,

    ρik,0=exp{Ll=1˜ξil[ψ(˜blk)ψ(˜alk+˜blk)]}ρik,1=exp{12˜e0˜f0(˜μ2ik+˜σ2ik)(˜mTk˜mk+tr(˜Λ1k)) +˜e0˜f0˜μik˜mTkxki+Ll=1˜ξil[ψ(˜alk)ψ(˜alk+˜blk)]}
    zik=˜ρik
    πlkq(πlk)Beta(πlk|˜alk,˜blk)˜alk=a0/K+Ni=1˜ρik˜ξil, ˜blk=b0(K1)/K+Ni=1(1˜ρik)˜ξilπlk=˜alk˜alk+˜blk
    tiq(ti)Multi(˜ξi1,˜ξi2,···,˜ξiL)˜ξil=ξil/Ll=1ξil,

    ξil=exp{Kk=1˜ρik[ψ(˜alk)ψ(˜alk+˜blk)]+Kk=1(1˜ρik)[ψ(˜blk)ψ(˜alk+˜blk)]+ψ(˜ζil)ψ(Ll=1˜ζil)}
    ti=argmaxl{˜ξil,l[1,L]}
    βilq({βil}Ll=1)Diri(˜λi1,˜λi2,···,˜λiL)˜λil=˜ξil+α0Gilβil=˜λil/Ll=1˜λil
    γsq(γs)Gamma(γs|˜c0,˜d0)˜c0=c0+12NK, ˜d0=d0+12Ni=1Kk=1(˜μ2ik+˜σ2ik)γs=˜c0/˜d0
    γεq(γε)Gamma(γε|˜e0,˜f0)˜e0=e0+12NP, ˜f0=f0+12Ni=1{\gamma _\varepsilon } = {{{{\tilde e}_0}} / {{{\tilde f}_0}}}
     算法1 SSC-BPFA算法
     输入:训练数据样本集\left\{ {{{{x}}_i}} \right\}_{i = 1}^N
     输出:字典{{D}}、权重\left\{ {{{{s}}_i}} \right\}_{i = 1}^N、稀疏模式指示向量\left\{ {{{{z}}_i}} \right\}_{i = 1}^N及聚类标签\left\{ {{t_i}} \right\}_{i = 1}^N
     步骤 1 设置收敛阈值\tau 和迭代次数上限{\rm{it}}{{\rm{r}}_{\max }},初始化原子数目K与聚类数目L,通过K-均值算法对数据样本进行初始聚类;
     步骤 2 按照式(1)—式(15)完成NPB-DL的概率建模;
     步骤 3 初始化隐变量集{{\varTheta } }和变分参数集{{{ H}}},计算{\hat{ X}} = {{D}}\left( {{{S}} \odot {{Z}}} \right),令迭代索引{\rm{itr}}=1;
     步骤 4 按照表1的VB推断公式对{{\varTheta } }{{{ H}}}进行更新,计算{{\hat{ X}}^{{\rm{new}}}} = {{D}}\left( {{{S}} \odot {{Z}}} \right)
     步骤 5 令{\rm{itr}}值增加1,删除{{D}}中未使用的原子并更新K的值,计算r = {{\left\| {{{{\hat{ X}}}^{{\rm{new}}}} - {\hat{ X}}} \right\|_{\rm{F}}^2} / {\left\| {{\hat{ X}}} \right\|_{\rm{F}}^2}},若r < \tau {\rm{itr}} \ge {\rm{it}}{{\rm{r}}_{\max }},删除所含样本
     占全部样本数量比例低于{10^{ - 3}}的聚类,将被删聚类内的样本分配到剩余聚类中{\tilde \xi _{il}}最大的那个聚类中,进入步骤6,否则跳回步骤4;
     步骤 6 固定{t_i}{\beta _{il}}及其变分参数的估计结果,将{{{d}}_k}, {s_{ik}}, {z_{ik}}, \pi _{lk}^ * , {\gamma _s}{\gamma _\varepsilon }这6个隐变量及其对应的变分参数继续进行迭代优化更新,直至
     重新达到收敛.
    下载: 导出CSV
  • XUAN Junyu, LU Jie, ZHANG Guangquan, et al. Doubly nonparametric sparse nonnegative matrix factorization based on dependent Indian buffet processes[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(5): 1835–1849. doi: 10.1109/TNNLS.2017.2676817
    LI Shaoyang, TAO Xiaoming, and LU Jianhua. Variational Bayesian inference for nonparametric signal compressive sensing on structured manifolds[C]. 2017 IEEE International Conference on Communications, Paris, France, 2017. doi: 10.1109/ICC.2017.7996389.
    DANG H P and CHAINAIS P. Indian buffet process dictionary learning: Algorithms and applications to image processing[J]. International Journal of Approximate Reasoning, 2017, 83: 1–20. doi: 10.1016/j.ijar.2016.12.010
    SERRA J G, TESTA M, MOLINA R, et al. Bayesian K-SVD using fast variational inference[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3344–3359. doi: 10.1109/TIP.2017.2681436
    NGUYEN V, PHUNG D, BUI H, et al. Discriminative Bayesian nonparametric clustering[C]. The 26th International Joint Conference on Artificial Intelligence, Melbourne, Australia, 2017. doi: 10.24963/ijcai.2017/355.
    HUYNH V and PHUNG D. Streaming clustering with Bayesian nonparametric models[J]. Neurocomputing, 2017, 258: 52–62. doi: 10.1016/j.neucom.2017.02.078
    AHARON M, ELAD M, and BRUCKSTEIN A. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4311–4322. doi: 10.1109/TSP.2006.881199
    ELAD M and AHARON M. Image denoising via sparse and redundant representations over learned dictionaries[J]. IEEE Transactions on Image Processing, 2006, 15(2): 3736–3745. doi: 10.1109/TIP.2006.881969
    ZHOU Mingyuan, CHEN Haojun, PAISLEY J, et al. Nonparametric Bayesian dictionary learning for analysis of noisy and incomplete images[J]. IEEE Transactions on Image Processing, 2012, 21(1): 130–144. doi: 10.1109/TIP.2011.2160072
    ZHOU Mingyuan, PAISLEY J, and CARIN L. Nonparametric learning of dictionaries for sparse representation of sensor signals[C]. The 3rd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, Aruba, Netherlands, 2009. doi: 10.1109/CAMSAP.2009.5413290.
    PAISLEY J, ZHOU Mingyuan, SAPIRO G, et al. Nonparametric image interpolation and dictionary learning using spatially-dependent Dirichlet and beta process priors[C]. 2010 IEEE International Conference on Image Processing, Hong Kong, China, 2010. doi: 10.1109/ICIP.2010.5653350.
    JU Fujiao, SUN Yanfeng, GAO Junbin, et al. Nonparametric tensor dictionary learning with beta process priors[J]. Neurocomputing, 2016, 218: 120–130. doi: 10.1016/j.neucom.2016.08.064
    KNOWLES D and GHAHRAMANI Z. Infinite sparse factor analysis and infinite independent components analysis[C]. The 7th International Conference on Independent Component Analysis and Signal Separation, London, UK, 2007: 381–388. doi: 10.1007/978-3-540-74494-8_48.
    ZHANG Linlin, GUINDANI M, VERSACE F, et al. A spatio-temporal nonparametric Bayesian variable selection model of fMRI data for clustering correlated time courses[J]. NeuroImage, 2014, 95: 162–175. doi: 10.1016/j.neuroimage.2014.03.024
    AKHTAR N and MIAN A. Nonparametric coupled Bayesian dictionary and classifier learning for hyperspectral classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(9): 4038–4050. doi: 10.1109/TNNLS.2017.2742528
    POLATKAN G, ZHOU Mingyuan, CARIN L, et al. A Bayesian nonparametric approach to image super-resolution[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(2): 346–358. doi: 10.1109/TPAMI.2014.2321404
    董道广, 芮国胜, 田文飚, 等. 基于结构相似性的非参数贝叶斯字典学习算法[J]. 通信学报, 2019, 40(1): 43–50. doi: 10.11959/j.issn.1000-436x.2019015

    DONG Daoguang, RUI Guosheng, TIAN Wenbiao, et al. Nonparametric Bayesian dictionary learning algorithm based on structural similarity[J]. Journal on Communications, 2019, 40(1): 43–50. doi: 10.11959/j.issn.1000-436x.2019015
    BISHOP C M. Pattern Recognition and Machine Learning (Information Science and Statistics)[M]. New York: Springer, 2006: 461–522.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  1466
  • HTML全文浏览量:  504
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-03
  • 修回日期:  2020-02-28
  • 网络出版日期:  2020-09-01
  • 刊出日期:  2020-11-16

目录

    /

    返回文章
    返回