高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于新息的自适应增量Kalman滤波器

孙小君 周晗 闫广明

孙小君, 周晗, 闫广明. 基于新息的自适应增量Kalman滤波器[J]. 电子与信息学报, 2020, 42(9): 2223-2230. doi: 10.11999/JEIT190493
引用本文: 孙小君, 周晗, 闫广明. 基于新息的自适应增量Kalman滤波器[J]. 电子与信息学报, 2020, 42(9): 2223-2230. doi: 10.11999/JEIT190493
Xiaojun SUN, Han ZHOU, Guangming YAN. Adaptive Incremental Kalman Filter Based on Innovation[J]. Journal of Electronics & Information Technology, 2020, 42(9): 2223-2230. doi: 10.11999/JEIT190493
Citation: Xiaojun SUN, Han ZHOU, Guangming YAN. Adaptive Incremental Kalman Filter Based on Innovation[J]. Journal of Electronics & Information Technology, 2020, 42(9): 2223-2230. doi: 10.11999/JEIT190493

基于新息的自适应增量Kalman滤波器

doi: 10.11999/JEIT190493
基金项目: 国家自然科学基金(61104209),黑龙江大学杰出青年科学基金(JCL201103),黑龙江大学电子工程重点实验室基金(DZZD2010-5),黑龙江大学青年科学基金(QL201212)
详细信息
    作者简介:

    孙小君:女,1980年生,副教授,研究方向为多传感器信息融合、状态估计、信号处理

    周晗:男,1996年生,硕士生,研究方向为多传感器信息融合、系统辨识

    闫广明:男,1979年生,讲师,研究方向为多传感器信息融合、状态估计

    通讯作者:

    孙小君 sxj@hlju.edu.cn

  • 中图分类号: TN713; TP18

Adaptive Incremental Kalman Filter Based on Innovation

Funds: The National Natural Science Foundation of China (61104209), The Outstanding Youth Science Foundation of Heilongjiang University (JCL201103), The Key Laboratory of Electronics Engineering, College of Heilongjiang Province (DZZD2010-5), The Youth Science Foundation of Heilongjiang University (QL201212)
  • 摘要: 在一定环境条件下,当系统的量测方程没有进行验证或校准时,使用该量测方程往往会产生未知的系统误差,从而导致较大的滤波误差。增量方程的引入可以有效解决欠观测系统的状态估计问题。该文考虑带未知噪声统计的线性离散增量系统,首先提出一种基于新息的噪声统计估计算法。可以得到系统噪声统计的无偏估计。进而,提出一种新的增量系统自适应Kalman滤波算法。相比已有的自适应增量滤波算法,该文所提算法得到的状态估计精度更高。两个仿真实例证明了其有效性和可行性。
  • 图  1  未知噪声统计的真值和估计值比较

    图  2  基于两种不同算法的噪声统计估计误差比较

    图  3  状态真值和两种自适应增量滤波器比较

    图  4  两种自适应增量滤波误差比较

    图  5  未知噪声统计的真值和估计值比较

    图  6  基于两种不同算法的噪声统计估计误差比较

    图  7  状态真值和两种自适应增量滤波器比较

    图  8  两种自适应增量滤波误差比较

  • SAGE A P and HUSA G W. Adaptive filtering with unknown prior statistics[C]. Joint Automatic Control Conference, Boulder, American, 1969: 760–769.
    KALMAN R E. A new approach to linear filtering and prediction problems[J]. Journal of Basic Engineering, 1960, 82(1): 35–45. doi: 10.1115/1.3662552
    邓自立. 自校正滤波理论及其应用——现代时间序列分析方法[M]. 哈尔滨: 哈尔滨工业大学出版社, 2003: 6.1.
    何丽, 汤莉. 基于Kalman滤波的云数据中心能耗和性能优化[J]. 计算机工程与科学, 2018, 40(7): 1165–1172. doi: 10.3969/j.issn.1007-130X.2018.07.003

    HE Li and TANG Li. Energy and performance optimization based on Kalman filtering in the cloud data center[J]. Computer Engineering &Science, 2018, 40(7): 1165–1172. doi: 10.3969/j.issn.1007-130X.2018.07.003
    张宏伟, 谢维信. 平滑约束无迹卡尔曼滤波器[J]. 信号处理, 2019, 35(3): 466–471. doi: 10.16798/j.issn.1003-0530.2019.03.019

    ZHANG Hongwei and XIE Weixin. Smoothly constrained unscented Kalman filter[J]. Journal of Signal Processing, 2019, 35(3): 466–471. doi: 10.16798/j.issn.1003-0530.2019.03.019
    耿友林, 解成博, 尹川, 等. 基于卡尔曼滤波的接收信号强度指示差值定位算法[J]. 电子与信息学报, 2019, 41(2): 455–461. doi: 10.11999/JEIT180268

    GENG Youlin, XIE Chengbo, YIN Chuan, et al. Received signal strength indication difference location algorithm based on Kalman filter[J]. Journal of Electronics &Information Technology, 2019, 41(2): 455–461. doi: 10.11999/JEIT180268
    汪玲, 朱栋强, 马凯莉, 等. 空间目标卡尔曼滤波稀疏成像方法[J]. 电子与信息学报, 2018, 40(4): 846–852. doi: 10.11999/JEIT170319

    WANG Ling, ZHU Dongqiang, MA Kaili, et al. Sparse imaging of space targets using Kalman filter[J]. Journal of Electronics &Information Technology, 2018, 40(4): 846–852. doi: 10.11999/JEIT170319
    SUN Xiaojun, GAO Yuan, DENG Zili, et al. Multi-model information fusion Kalman filtering and white noise deconvolution[J]. Information Fusion, 2010, 11: 163–173. doi: 10.1016/j.inffus.2009.06.004
    刘利生, 吴斌, 杨萍. 航天器精确定轨与自校准技术[M]. 北京: 国防工业出版社, 2005: 9.2.

    LIU Lisheng, WU Bin, and YANG Ping. Orbit Precision Determination & Self-Calibration Technique of Spacecraft[M]. Beijing: National Defense Industry Press, 2005: 9.2.
    傅惠民, 娄泰山, 吴云章. 欠观测条件下的扩展增量Kalman滤波方法[J]. 航空动力学报, 2012, 27(4): 777–781. doi: 10.13224/j.cnki.jasp.2012.04.004

    FU Huimin, LOU Taishan, and WU Yunzhang. Extended incremental Kalman filter method under poor observation condition[J]. Journal of Aerospace Power, 2012, 27(4): 777–781. doi: 10.13224/j.cnki.jasp.2012.04.004
    傅惠民, 娄泰山, 吴云章. 增量粒子滤波方法[J]. 航空动力学报, 2013, 28(6): 1201–1207. doi: 10.13224/j.cnki.jasp.2013.06.005

    FU Huimin, LOU Taishan, and WU Yunzhang. Incremental particle filter method[J]. Journal of Aerospace Power, 2013, 28(6): 1201–1207. doi: 10.13224/j.cnki.jasp.2013.06.005
    傅惠民, 吴云章, 娄泰山. 欠观测条件下的增量Kalman滤波方法[J]. 机械强度, 2012, 34(1): 43–47. doi: 10.16579/j.issn.1001.9669.2012.01.014

    FU Huimin, WU Yunzhang, and LOU Taishan. Incremental Kalman filter method under poor observation condition[J]. Journal of Mechanical Strength, 2012, 34(1): 43–47. doi: 10.16579/j.issn.1001.9669.2012.01.014
    SUN Xiaojun, YAN Guangming, and ZHANG Bo. A Kind of incremental Kalman smoother under poor observation condition[C]. The 36th Chinese Control Conference, Dalian, China, 2017: 2524–2527. doi: 10.23919/ChiCC.2017.8027740.
    SUN Xiaojun and YAN Guangming. Multi-sensor optimal weighted fusion incremental Kalman smoother[J]. Journal of Systems Engineering and Electronics, 2018, 29(2): 262–268. doi: 10.21629/JSEE.2018.02.06
    徐景硕, 秦永元, 彭蓉. 自适应卡尔曼滤波器渐消因子选取方法研究[J]. 系统工程与电子技术, 2004, 26(11): 1552–1554. doi: 10.3321/j.issn:1001-506X.2004.11.006

    XU Jingshuo, QIN Yongyuan, and PENG Rong. New method for selecting adaptive Kalman filter fading factor[J]. Systems Engineering and Electronics, 2004, 26(11): 1552–1554. doi: 10.3321/j.issn:1001-506X.2004.11.006
    鲁平, 赵龙, 陈哲. 改进的Sage-Husa自适应滤波及其应用[J]. 系统仿真学报, 2007, 19(15): 3503–3505. doi: 10.3969/j.issn.1004-731X.2007.15.034

    LU Ping, ZHAO Long, and CHEN Zhe. Improved Sage-Husa adaptive filtering and its application[J]. Journal of System Simulation, 2007, 19(15): 3503–3505. doi: 10.3969/j.issn.1004-731X.2007.15.034
    傅惠民, 吴云章, 娄泰山. 自适应增量Kalman滤波方法[J]. 航空动力学报, 2012, 27(6): 1125–1129.

    FU Huimin, WU Yunzhang, and LOU Taishan. Adaptive incremental Kalman filter method[J]. Journal of Aerospace Power, 2012, 27(6): 1125–1129.
    徐英蛟. 一种改进自适应增量Kalman滤波的传递对准算法[J]. 指挥控制与仿真, 2018, 40(4): 33–37. doi: 10.3969/j.issn.1673-3819.2018.04.008

    XU Yingjiao. A improved adaptive incremental filtering algorithm of transfer alignment[J]. Command Control &Simulation, 2018, 40(4): 33–37. doi: 10.3969/j.issn.1673-3819.2018.04.008
    傅惠民, 吴云章, 娄泰山. 自适应增量粒子滤波方法[J]. 航空动力学报, 2013, 28(8): 1764–1768.

    FU Huimin, WU Yunzhang, and LOU Taishan. Adaptive incremental particle filter method[J]. Journal of Aerospace Power, 2013, 28(8): 1764–1768.
    傅惠民, 吴琼. 线性独立增量过程分析方法[J]. 航空动力学报, 2010, 25(4): 930–935.

    FU Huimin and WU Qiong. Analysis method for linear process with independent increments[J]. Journal of Aerospace Power, 2010, 25(4): 930–935.
  • 加载中
图(8)
计量
  • 文章访问数:  2666
  • HTML全文浏览量:  852
  • PDF下载量:  144
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-02
  • 修回日期:  2020-03-20
  • 网络出版日期:  2020-08-06
  • 刊出日期:  2020-09-27

目录

    /

    返回文章
    返回