高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

负载作用下相依网络择优恢复方法研究

刘凤增 肖兵 陈施思 陈嘉勋

刘凤增, 肖兵, 陈施思, 陈嘉勋. 负载作用下相依网络择优恢复方法研究[J]. 电子与信息学报, 2020, 42(7): 1694-1701. doi: 10.11999/JEIT190486
引用本文: 刘凤增, 肖兵, 陈施思, 陈嘉勋. 负载作用下相依网络择优恢复方法研究[J]. 电子与信息学报, 2020, 42(7): 1694-1701. doi: 10.11999/JEIT190486
Fengzeng LIU, Bing XIAO, Shisi CHEN, Jiaxun CHEN. A Preferential Recovery Method of Interdependent Networks under Load[J]. Journal of Electronics & Information Technology, 2020, 42(7): 1694-1701. doi: 10.11999/JEIT190486
Citation: Fengzeng LIU, Bing XIAO, Shisi CHEN, Jiaxun CHEN. A Preferential Recovery Method of Interdependent Networks under Load[J]. Journal of Electronics & Information Technology, 2020, 42(7): 1694-1701. doi: 10.11999/JEIT190486

负载作用下相依网络择优恢复方法研究

doi: 10.11999/JEIT190486
基金项目: 国家自然科学基金(61502522)
详细信息
    作者简介:

    刘凤增:男,1987年生,讲师,博士生,研究方向为系统工程、复杂网络

    肖兵:女,1966年生,博士,教授,博士生导师,研究方向为军事信息系统

    陈施思:女,1988年生,硕士,讲师,研究方向为军事信息系统

    陈嘉勋:女,1995年生,硕士生,研究方向为军事信息系统建模与仿真

    通讯作者:

    刘凤增 fengzeng_liu@126.com

  • 中图分类号: TP393

A Preferential Recovery Method of Interdependent Networks under Load

Funds: The National Natural Science Foundation of China (61502522)
  • 摘要:

    优选节点实施恢复是控制相依网络级联失效的有效措施。针对以往恢复模型未考虑节点负载的情况,该文首先分析了包含依赖失效和过载失效的级联失效过程,构建了负载作用下相依网络恢复模型。然后,基于共同边界节点的结构和动力学属性,提出一种基于容量和连接边的择优恢复(PRCCL)方法。实验结果表明,在无标度相依网络中,PRCCL方法恢复效果明显好于基准方法,恢复时间更短,恢复后的网络具有更高的平均度和鲁棒性;在Power网和Internet网构成的相依网络中,PRCCL方法恢复效果同样优于基准方法;PRCCL方法的优势与恢复比例、负载控制参数成正比,与容忍系数成反比。实验结果验证了PRCCL方法的有效性,对于现实中相依网络恢复工作具有科学指导价值。

  • 图  1  负载作用下相依网络级联失效过程

    图  2  相依网络恢复模型

    图  3  共同边界节点$({{\rm{A}}_1},{{\rm{B}}_1})$

    图  4  3类相依网络中4种方法恢复效果对比

    图  5  恢复比例对4种方法恢复效果的影响

    图  6  负载控制参数对4种方法恢复效果的影响

    图  7  容忍系数对4种方法恢复效果的影响

    图  8  Power和Internet相依网络中4种方法恢复效果对比

    表  1  SF-ER和SF-SF相依网络中4种方法迭代次数(NOI)对比

    SF-ERSF-SF
    f0.050.100.150.200.250.300.350.400.050.100.150.200.250.300.350.40
    RR2.002.002.154.0910.9910.4410.138.733.043.103.619.6815.1015.5915.7516.94
    PRD2.002.002.144.029.677.296.175.563.033.063.225.9411.6911.8512.2512.13
    PRL2.002.002.144.169.828.476.836.393.033.063.246.412.0612.0112.0912.48
    PRCCL2.002.002.143.999.617.275.815.123.033.073.204.989.129.4210.0711.06
    下载: 导出CSV

    表  2  4种方法恢复后网络平均度和网络负载对比

    恢复网络平均度恢复网络负载
    f0.050.100.150.200.250.300.350.400.050.100.150.200.250.300.350.40
    RR3.993.282.831.910.750.600.500.481186.51162.31102.8654.8121.842.951.9124.3
    PRD4.684.233.913.461.791.081.020.901185.21161.41107.5835.6261.856.478.2131.4
    PRL4.664.183.873.381.851.091.090.991185.21161.51108.4817.8268.362.083.8142.4
    PRCCL4.694.224.004.022.781.561.121.101185.31162.01111.6948.9410.5149.592.0144.3
    下载: 导出CSV
  • D’AGOSTINO G and SCALA A. Networks of Networks: The Last Frontier of Complexity[M]. Cham: Springer, 2014: 3–36.
    CHEN Zhenhao, WU Jiajing, XIA Yongxiang, et al. Robustness of interdependent power grids and communication networks: A complex network perspective[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2018, 65(1): 115–119. doi: 10.1109/TCSII.2017.2705758
    BULDYREV S V, PARSHANI R, PAUL G, et al. Catastrophic cascade of failures in interdependent networks[J]. Nature, 2010, 464(7291): 1025–1028. doi: 10.1038/nature08932
    ZIO E. Challenges in the vulnerability and risk analysis of critical infrastructures[J]. Reliability Engineering & System Safety, 2016, 152: 137–150. doi: 10.1016/j.ress.2016.02.009
    SHEKHTMAN L M, DANZIGER M M, and HAVLIN S. Recent advances on failure and recovery in networks of networks[J]. Chaos, Solitons & Fractals, 2016, 90: 28–36. doi: 10.1016/j.chaos.2016.02.002
    SCHNEIDER C M, YAZDANI N, ARAÚJO N A M, et al. Towards designing robust coupled networks[J]. Scientific Reports, 2013, 3(1): 1969. doi: 10.1038/srep01969
    WANG Xingyuan, ZHOU Wenjie, LI Rui, et al. Improving robustness of interdependent networks by a new coupling strategy[J]. Physica A: Statistical Mechanics and Its Applications, 2018, 492: 1075–1080. doi: 10.1016/j.physa.2017.11.037
    PARSHANI R, ROZENBLAT C, IETRI D, et al. Inter-similarity between coupled networks[J]. EPL (Europhysics Letters) , 2010, 92(6): 68002. doi: 10.1209/0295-5075/92/68002
    WANG Junde, LAO Songyang, RUAN Yirun, et al. Research on the robustness of interdependent networks under localized attack[J]. Applied Sciences, 2017, 7(6): 597. doi: 10.3390/app7060597
    HU Yanqing, ZHOU Dong, ZHANG Rui, et al. Percolation of interdependent networks with intersimilarity[J]. Physical Review E, 2013, 88(5): 052805. doi: 10.1103/PhysRevE.88.052805
    WANG Shuai and LIU Jing. Designing comprehensively robust networks against intentional attacks and cascading failures[J]. Information Sciences, 2019, 478: 125–140. doi: 10.1016/j.ins.2018.11.005
    MAJDANDZIC A, PODOBNIK B, BULDYREV S V, et al. Spontaneous recovery in dynamical networks[J]. Nature Physics, 2014, 10(1): 34–38. doi: 10.1038/NPHYS2819
    MAJDANDZIC A, BRAUNSTEIN L A, CURME C, et al. Multiple tipping points and optimal repairing in interacting networks[J]. Nature Communications, 2016, 7(1): 10850. doi: 10.1038/ncomms10850
    DI MURO M A, LA ROCCA C E, STANLEY H E, et al. Recovery of interdependent networks[J]. Scientific Reports, 2016, 6(1): 22834. doi: 10.1038/srep22834
    HE Xian and CHA E J. Modeling the damage and recovery of interdependent critical infrastructure systems from natural hazards[J]. Reliability Engineering & System Safety, 2018, 177: 162–175. doi: 10.1016/j.ress.2018.04.029
    ZHONG Jilong, ZHANG Fengming, YANG Shunkun, et al. Restoration of interdependent network against cascading overload failure[J]. Physica A: Statistical Mechanics and Its Applications, 2019, 512: 884–891. doi: 10.1016/j.physa.2018.09.130
    吴佳键, 龚凯, 王聪, 等. 相依网络上基于相连边的择优恢复算法[J]. 物理学报, 2018, 67(8): 088901. doi: 10.7498/aps.67.20172526

    WU Jiajian, GONG Kai, WANG Cong, et al. Enhancing resilience of interdependent networks against cascading failures under preferential recovery strategies[J]. Acta Physica Sinica, 2018, 67(8): 088901. doi: 10.7498/aps.67.20172526
    MOTTER A E and LAI Yingcheng. Cascade-based attacks on complex networks[J]. Physical Review E, 2002, 66(6): 065102. doi: 10.1103/PhysRevE.66.065102
    GAO Jiazi, YIN Yongfeng, FIONDELLA L, et al. Recovery of coupled networks after cascading failures[J]. Journal of Systems Engineering and Electronics, 2018, 29(3): 650–657. doi: 10.21629/JSEE.2018.03.22
    CHEN Duanbing, LÜ Linyuan, SHANG Mingsheng, et al. Identifying influential nodes in complex networks[J]. Physica A: Statistical Mechanics and Its Applications, 2012, 391(4): 1777–1787. doi: 10.1016/j.physa.2011.09.017
    WATTS D J and STROGATZ S H. Collective dynamics of ‘small-world’ networks[J]. Nature, 1998, 393(6684): 440–442. doi: 10.1038/30918
    NEWMAN M. University of Oregon route views archive project[EB/OL]. http://routeviews.org/, 2006.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  2272
  • HTML全文浏览量:  1279
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-01
  • 修回日期:  2019-10-30
  • 网络出版日期:  2020-02-07
  • 刊出日期:  2020-07-23

目录

    /

    返回文章
    返回