高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

关于系统级故障诊断的烟花-反向传播神经网络算法

归伟夏 陆倩 苏美力

归伟夏, 陆倩, 苏美力. 关于系统级故障诊断的烟花-反向传播神经网络算法[J]. 电子与信息学报, 2020, 42(5): 1102-1109. doi: 10.11999/JEIT190484
引用本文: 归伟夏, 陆倩, 苏美力. 关于系统级故障诊断的烟花-反向传播神经网络算法[J]. 电子与信息学报, 2020, 42(5): 1102-1109. doi: 10.11999/JEIT190484
Weixia GUI, Qian LU, Meili SU. A Firewoks Algorithm-Back Propagation Fault Diagnosis Algorithm for System-level Fault Diagnosis[J]. Journal of Electronics & Information Technology, 2020, 42(5): 1102-1109. doi: 10.11999/JEIT190484
Citation: Weixia GUI, Qian LU, Meili SU. A Firewoks Algorithm-Back Propagation Fault Diagnosis Algorithm for System-level Fault Diagnosis[J]. Journal of Electronics & Information Technology, 2020, 42(5): 1102-1109. doi: 10.11999/JEIT190484

关于系统级故障诊断的烟花-反向传播神经网络算法

doi: 10.11999/JEIT190484
基金项目: 国家自然科学基金(61862003, 61862004),广西研究生教育创新计划资助项目(YCSW2019036)
详细信息
    作者简介:

    归伟夏:女,1974年生,副教授,博士,研究方向为智能计算、网络与并行分布式计算

    陆倩:女,1994年生,硕士生,研究方向为智能算法、并行计算

    苏美力:女,1989年生,硕士生,研究方向为智能算法、并行计算

    通讯作者:

    陆倩 563766390@qq.com

  • 中图分类号: TP306

A Firewoks Algorithm-Back Propagation Fault Diagnosis Algorithm for System-level Fault Diagnosis

Funds: The National Natural Science Foundation of China (61862003, 61862004), The Innovation Project of Guangxi Graduate Education (YCSW2019036)
  • 摘要:

    为了更快速且精确地诊断出大规模多处理器系统中的故障单元,该文首次将改进的烟花算法和反向传播(BP)神经网络相结合,提出一种新的系统级故障诊断算法—烟花-反向传播神经网络故障诊断算法(FWA-BPFD)。首先,在烟花算法中引入双种群策略、协作算子以及最优算子,设计新的适应度函数,优化变异算子、映射规则和选择策略。然后,利用烟花算法全局搜索能力和局部搜索能力的自调节机制,优化BP神经网络中的权值和阈值的寻优过程。仿真实验结果表明,该文算法相较于其他算法不仅有效地降低了迭代次数和训练时间,而且还进一步提高了诊断精度。

  • 图  1  3层BP神经网络结构图

    图  2  均匀交叉运算示意图

    图  3  烟花算法优化BP神经网络的流程图

    图  4  各关键参数对算法CPU运行时间的影响

    图  5  算法训练性能图

    图  6  不同系统规模中4种算法诊断正确率的比较

    表  1  PMC诊断模型

    测试结点${u_i}$被测试结点${u_j}$测试结果${u_{ij}}$
    000
    011
    100/1
    110/1
    下载: 导出CSV

    表  2  烟花算法的其它参数设置

    参数名称参数说明参数值
    ${A_{\rm{min}}}$烟花的最小爆炸半径2
    ${p_{\rm{c}}}$协作算子交叉概率0.5
    ${X_{\rm{LB}}}$烟花位置下界值0
    ${X_{\rm{UB}}}$烟花位置上界值1
    T最大迭代次数1000
    下载: 导出CSV

    表  3  神经网络训练关键参数设置

    参数名称参数说明参数值
    show设置数据显示刷新频率30
    lr网络的学习率0.01
    goal网络输出误差最小值7e-07
    epochs最大迭代次数10000
    下载: 导出CSV

    表  4  4种算法在不同系统规模中的性能比较

    算法名称$n = 50$$n = 100$
    训练时间(s)迭代次数训练时间(s)迭代次数
    BPFD412685341635937
    CS-BPFD233327178102134
    GA-BPFD310365278903978
    本文FWA-BPFD212305167551998
    下载: 导出CSV
  • PREPARATA F P, METZE G, and CHIEN R T. On the connection assignment problem of diagnosable systems[J]. IEEE Transactions on Electronic Computers, 1967, EC-16(6): 848–854. doi: 10.1109/PGEC.1967.264748
    BARSI F, GRANDONI F, and MAESTRINI P. A theory of diagnosability of digital systems[J]. IEEE Transactions on Computers, 1976, C-25(6): 585–593. doi: 10.1109/tc.1976.1674658
    CHWA K Y and HAKIMI S L. Schemes for fault-tolerant computing: a comparison of modularly redundant and t-diagnosable systems[J]. Information and Control, 1981, 49(3): 212–238. doi: 10.1016/S0019-9958(81)90388-0
    MALEK M. A comparison connection assignment for diagnosis of multiprocessor systems[C]. The 7th Annual Symposium on Computer Architecture. New York, USA, 1980: 31–36. doi: 10.1145/800053.801906.
    MAENG J and MALEK M. A comparison connection assignment for self-diagnosis of multiprocessor systems[C]. The 11th International Symposium on Fault-Tolerant Computing, Portland, USA, 1981: 173–175.
    XIE Min, YE Liangcheng, and LIANG Jiarong. A t/k diagnosis algorithm on hypercube‐like networks[J]. Concurrency and Computation: Practice and Experience, 2018, 30(6): e4358. doi: 10.1002/cpe.4358
    冯海林, 雷花, 梁伦. 一种基于PMC模型下的概率性矩阵诊断算法[J]. 南京理工大学学报: 自然科学版, 2017, 41(4): 479–485. doi: 10.14177/j.cnki.32-1397n.2017.41.04.013

    FENG Hailin, LEI Hua, and LIANG Lun. Probability matrix diagnosis algorithm based on PMC model[J]. Journal of Nanjing University of Science and Technology, 2017, 41(4): 479–485. doi: 10.14177/j.cnki.32-1397n.2017.41.04.013
    云龙, 梁家荣, 周宁. 基于互连网络系统故障的新型自适应诊断算法[J]. 计算机应用研究, 2017, 34(9): 2638–2641, 2650. doi: 10.3969/j.issn.1001-3695.2017.09.016

    YUN Long, LIANG Jiarong, and ZHOU Ning. Novel adapted algorithm for interconnection network[J]. Application Research of Computers, 2017, 34(9): 2638–2641, 2650. doi: 10.3969/j.issn.1001-3695.2017.09.016
    MOURAD E and NAYAK A. Comparison-based system-level fault diagnosis: A neural network approach[J]. IEEE Transactions on Parallel and Distributed Systems, 2012, 23(6): 1047–1059. doi: 10.1109/TPDS.2011.248
    归伟夏, 刘翠. 一种Malek模型下的系统故障诊断算法[J]. 计算机工程与应用, 2017, 53(13): 78–82, 145. doi: 10.3778/j.issn.1002-8331.1607-0130

    GUI Weixia and LIU Cui. System-level diagnosis algorithm based on Malek model[J]. Computer Engineering and Applications, 2017, 53(13): 78–82, 145. doi: 10.3778/j.issn.1002-8331.1607-0130
    WANG Yuxi, LI Zhan, XU Minghui, et al. An evolutionary approach based on ant colony system to system-level fault diagnosis[C]. The 8th IEEE International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia), Hefei, China, 2016: 2493–2497. doi: 10.1109/IPEMC.2016.7512690.
    赵冬. 关于系统级故障诊断的两种高效算法[D]. [硕士论文], 南京财经大学, 2016.

    ZHAO Dong. Two efficient algorithms about system-level fault diagnosis[D]. [Master’s dissertation], Nanjing University of Finance and Economics, 2016.
    LU Qian, GUI Weixia, and SU Meili. A fireworks algorithm for the system-level fault diagnosis based on MM* model[J]. IEEE Access, 2019, 7: 136975–136985. doi: 10.1109/ACCESS.2019.2942336
    韩树楠, 张旻, 李歆昊. 基于构造代价函数求解的自同步扰码盲识别方法[J]. 电子与信息学报, 2018, 40(8): 1971–1977. doi: 10.11999/JEIT171026

    HAN Shunan, ZHANG Min, and LI Xinhao. A blind identification method of self-synchronous scramblers based on optimization of established cost function[J]. Journal of Electronics &Information Technology, 2018, 40(8): 1971–1977. doi: 10.11999/JEIT171026
    梁晓萍, 郭振军, 朱昌洪. 基于头脑风暴优化算法的BP神经网络模糊图像复原[J]. 电子与信息学报, 2019, 41(12): 2980–2986. doi: 10.11999/JEIT190261

    LIANG Xiaoping, GUO Zhenjun, and ZHU Changhong. BP neural network fuzzy image restoration basedon brain storming optimization algorithm[J]. Journal of Electronics &Information Technology, 2019, 41(12): 2980–2986. doi: 10.11999/JEIT190261
    CUI Jiefen, LI Yinping, WANG Shixin, et al. Directional preparation of anticoagulant-active sulfated polysaccharides from Enteromorpha prolifera using artificial neural networks[J]. Scientific Reports, 2018, 8(1): No. 3062. doi: 10.1038/s41598-018-21556-x
    LI Jingmei, TIAN Qiao, ZHANG Guoyin, et al. Task scheduling algorithm based on fireworks algorithm[J]. EURASIP Journal on Wireless Communications and Networking, 2018, 2018(1): No. 256. doi: 10.1186/s13638-018-1259-2
    XUE Yu, ZHAO Binping, MA Tinghuai, et al. A self-adaptive fireworks algorithm for classification problems[J]. IEEE Access, 2018, 6: 44406–44416. doi: 10.1109/ACCESS.2018.2858441
    刘田田. 基于BP神经网络的系统级故障诊断算法研究[D]. [硕士论文], 南京财经大学, 2015.

    LIU Tiantian. System level fault diagnosis algorithm research based on BP neural network[D]. [Master’s dissertation], Nanjing University of Finance and Economics, 2015.
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  6788
  • HTML全文浏览量:  1165
  • PDF下载量:  149
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-28
  • 修回日期:  2020-01-19
  • 网络出版日期:  2020-02-13
  • 刊出日期:  2020-06-04

目录

    /

    返回文章
    返回